
SPSS Programming 
and Data Management, 3rd Edition

A Guide for SPSS and SAS® Users

 
Raynald Levesque and SPSS Inc.



For more information about SPSS® software products, please visit our Web site at http://www.spss.com or contact:

SPSS Inc.

233 South Wacker Drive, 11th Floor

Chicago, IL 60606-6412

Tel: (312) 651-3000

Fax: (312) 651-3668

SPSS is a registered trademark and the other product names are the trademarks of SPSS Inc. for its proprietary computer

software. No material describing such software may be produced or distributed without the written permission of the owners of

the trademark and license rights in the software and the copyrights in the published materials.

The SOFTWARE and documentation are provided with RESTRICTED RIGHTS. Use, duplication, or disclosure by the

Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of The Rights in Technical Data and Computer Software

clause at 52.227-7013. Contractor/manufacturer is SPSS Inc., 233 South Wacker Drive, 11th Floor, Chicago, IL 60606-6412.

General notice: Other product names mentioned herein are used for identification purposes only and may be trademarks of

their respective companies.

SAS is a registered trademark of SAS Institute Inc.

Windows is a registered trademark of Microsoft Corporation. Microsoft® Access, Microsoft® Excel, and Microsoft® Word are

products of Microsoft Corporation.

DataDirect, DataDirect Connect, INTERSOLV, and SequeLink are registered trademarks of DataDirect Technologies.

Portions of this product were created using LEADTOOLS © 1991–2000, LEAD Technologies, Inc. ALL RIGHTS RESERVED.

LEAD, LEADTOOLS, and LEADVIEW are registered trademarks of LEAD Technologies, Inc.

Portions of this product were based on the work of the FreeType Team (http://www.freetype.org).

A portion of the SPSS software contains zlib technology. Copyright © 1995–2002 by Jean-loup Gailly and Mark Adler. The zlib

software is provided “as-is,” without express or implied warranty. In no event shall the authors of zlib be held liable for any

damages arising from the use of this software.

A portion of the SPSS software contains Sun Java Runtime libraries. Copyright © 2003 by Sun Microsystems, Inc. All rights

reserved. The Sun Java Runtime libraries include code licensed from RSA Security, Inc. Some portions of the libraries are

licensed from IBM and are available at http://oss.software.ibm.com/icu4j/. Sun makes no warranties to the software of any kind.

Sax Basic is a trademark of Sax Software Corporation. Copyright © 1993–2004 by Polar Engineering and Consulting. All

rights reserved.

SPSS Programming and Data Management, 3rd Edition: A Guide for SPSS and SAS Users

Copyright © 2006 by SPSS Inc.

All rights reserved.

Printed in the United States of America.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any

means—electronic, mechanical, photocopying, recording, or otherwise—without the prior written permission of the publisher.

1 2 3 4 5 6 7 8 9 0 09 08 07 06

ISBN 1-56827-374-6



Preface

Experienced data analysts know that a successful analysis or meaningful report often
requires more work in acquiring, merging, and transforming data than in specifying
the analysis or report itself. SPSS contains powerful tools for accomplishing and
automating these tasks. While much of this capability is available through the
graphical user interface, many of the most powerful features are available only through
command syntax. With release 14.0.1, SPSS makes the programming features of
its command syntax significantly more powerful by adding the ability to combine it
with a full-featured programming language. This book offers many examples of the
kinds of things that you can accomplish using SPSS command syntax by itself and in
combination with the Python programming language.

Using This Book

The contents of this book and the accompanying CD are discussed in Chapter 1. In
particular, see the section “Using This Book” if you plan to run the examples on the CD.
The CD also contains additional command files, macros, and scripts that are mentioned
but not discussed in the book and that can be useful for solving specific problems.

This edition has been updated to include numerous enhanced data management
features introduced in SPSS 14.0. Many examples will work with earlier versions, but
some examples rely on features not available prior to SPSS 14.0. All of the Python
examples require SPSS 14.0.1 or later.

For SAS Users

If you have more experience with SAS than with SPSS for data management, see
Chapter 19 for comparisons of the different approaches to handling various types of
data management tasks. Quite often, there is not a simple command-for-command
relationship between the two programs, although each accomplishes the desired end.

iii



Acknowledgments

This book reflects the work of many members of the SPSS staff who have contributed
examples here and in SPSS Developer Central, as well as that of Raynald Levesque,
whose examples formed the backbone of earlier editions and remain important in
this edition. We also wish to thank Stephanie Schaller, who provided many sample
SAS jobs and helped to define what the SAS user would want to see, as well as
Marsha Hollar and Brian Teasley, the authors of the original chapter “SPSS for SAS
Programmers.”

A Note from Raynald Levesque

It has been a pleasure to be associated with this project from its inception. I have for
many years tried to help SPSS users understand and exploit its full potential. In this
context, I am thrilled about the opportunities afforded by the Python integration and
invite everyone to visit my site at www.spsstools.net for additional examples. And I
want to express my gratitude to my spouse, Nicole Tousignant, for her continued
support and understanding.

Raynald Levesque

iv



Contents

1 Overview 1

Using This Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Documentation Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Part I: Data Management

2 Best Practices and Efficiency Tips 5

Working with Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Creating Command Syntax Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Running SPSS Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Syntax Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Customizing the Programming Environment . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Displaying Commands in the Log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Displaying the Status Bar in Command Syntax Windows . . . . . . . . . . . . . 9

Protecting the Original Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Do Not Overwrite Original Variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Using Temporary Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Using Temporary Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Use EXECUTE Sparingly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Lag Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Using $CASENUM to Select Cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
MISSING VALUES Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
WRITE and XSAVE Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Using Comments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Using SET SEED to Reproduce Random Samples or Values . . . . . . . . . . . . . . 18

v



Divide and Conquer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Using INSERT with a Master Command Syntax File . . . . . . . . . . . . . . . . 20
Defining Global Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Getting Data into SPSS 23

Getting Data from Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Installing Database Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Database Wizard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Reading a Single Database Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Reading Multiple Tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Reading Excel Files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Reading a “Typical” Worksheet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Reading Multiple Worksheets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Reading Text Data Files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Simple Text Data Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Delimited Text Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Fixed-Width Text Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Text Data Files with Very Wide Records . . . . . . . . . . . . . . . . . . . . . . . . . 47
Reading Different Types of Text Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Reading Complex Text Data Files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Mixed Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Grouped Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Nested (Hierarchical) Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Repeating Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Reading SAS Data Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Reading Stata Data Files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

vi



4 File Operations 65

Working with Multiple Data Sources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Merging Data Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Merging Files with the Same Cases but Different Variables . . . . . . . . . . 69
Merging Files with the Same Variables but Different Cases . . . . . . . . . . 73
Updating Data Files by Merging New Values from Transaction Files . . . . 77

Aggregating Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Aggregate Summary Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Weighting Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Changing File Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Transposing Cases and Variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Cases to Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Variables to Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5 Variable and File Properties 95

Variable Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Variable Labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Value Labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Missing Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Measurement Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Custom Variable Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Using Variable Properties As Templates . . . . . . . . . . . . . . . . . . . . . . . 102

File Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6 Data Transformations 105

Recoding Categorical Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

vii



Banding Scale Variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Simple Numeric Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Arithmetic and Statistical Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Random Value and Distribution Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 111
String Manipulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Changing the Case of String Values . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Combining String Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Taking Strings Apart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Working with Dates and Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Date Input and Display Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Date and Time Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7 Cleaning and Validating Data 129

Finding and Displaying Invalid Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Excluding Invalid Data from Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Finding and Filtering Duplicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Data Validation Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

8 Conditional Processing, Looping, and
Repeating 139

Indenting Commands in Programming Structures . . . . . . . . . . . . . . . . . . . . 139
Conditional Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Conditional Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Conditional Case Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Simplifying Repetitive Tasks with DO REPEAT . . . . . . . . . . . . . . . . . . . . . . . 144
ALL Keyword and Error Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

Vectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

viii



Creating Variables with VECTOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Disappearing Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

Loop Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Indexing Clauses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Nested Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Conditional Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Using XSAVE in a Loop to Build a Data File. . . . . . . . . . . . . . . . . . . . . . 156
Calculations Affected by Low Default MXLOOPS Setting . . . . . . . . . . . 158

9 Exporting Data and Results 161

Output Management System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Using Output as Input with OMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Adding Group Percentile Values to a Data File . . . . . . . . . . . . . . . . . . . 162
Bootstrapping with OMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Transforming OXML with XSLT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
“Pushing” Content from an XML File . . . . . . . . . . . . . . . . . . . . . . . . . . 172
“Pulling” Content from an XML File . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Positional Arguments versus Localized Text Attributes. . . . . . . . . . . . . 184
Layered Split-File Processing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

Exporting Data to Other Applications and Formats . . . . . . . . . . . . . . . . . . . 186
Saving Data in SAS Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
Saving Data in Stata Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
Saving Data in Excel Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Writing Data Back to a Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Saving Data in Text Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

Exporting Results to Word, Excel, and PowerPoint . . . . . . . . . . . . . . . . . . . 192

ix



10 Scoring Data with Predictive Models 193

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Basics of Scoring Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

Command Syntax for Scoring. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
Mapping Model Variables to SPSS Variables . . . . . . . . . . . . . . . . . . . . 196
Missing Values in Scoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

Using Predictive Modeling to Identify Potential Customers . . . . . . . . . . . . . 197
Building and Saving Predictive Models . . . . . . . . . . . . . . . . . . . . . . . . 197
Commands for Scoring Your Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
Including Post-Scoring Transformations . . . . . . . . . . . . . . . . . . . . . . . 205
Getting Data and Saving Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
Running Your Scoring Job Using the SPSS Batch Facility . . . . . . . . . . . 207

Part II: Programming with SPSS and Python

11 Introduction 211

12 Getting Started with Python Programming in
SPSS 215

The spss Python Module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
Submitting Commands to SPSS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
Dynamically Creating SPSS Command Syntax. . . . . . . . . . . . . . . . . . . . . . . 219
Capturing and Accessing Output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
Python Syntax Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
Mixing Command Syntax and Program Blocks . . . . . . . . . . . . . . . . . . . . . . 224
Handling Errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

x



Using a Python IDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
Supplementary Python Modules for Use with SPSS . . . . . . . . . . . . . . . . . . 230
Getting Help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

13 Best Practices 233

Creating Blocks of Command Syntax within Program Blocks. . . . . . . . . . . . 233
Dynamically Specifying Command Syntax Using String Substitution . . . . . . 234
Using Raw Strings in Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
Displaying Command Syntax Generated by Program Blocks . . . . . . . . . . . . 238
Handling Wide Output in the Viewer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
Creating User-Defined Functions in Python . . . . . . . . . . . . . . . . . . . . . . . . . 239
Creating a File Handle to the SPSS Install Directory . . . . . . . . . . . . . . . . . . 241
Choosing the Best Programming Technology . . . . . . . . . . . . . . . . . . . . . . . 242
Using Exception Handling in Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
Debugging Your Python Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

14 Working with Variable Dictionary Information 251

Summarizing Variables by Measurement Level . . . . . . . . . . . . . . . . . . . . . . 253
Listing Variables of a Specified Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
Checking If a Variable Exists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
Creating Separate Lists of Numeric and String Variables. . . . . . . . . . . . . . . 257
Using Object-Oriented Methods for Retrieving Dictionary Information. . . . . 258

Getting Started with the VariableDict Class . . . . . . . . . . . . . . . . . . . . . 259
Defining a List of Variables between Two Variables . . . . . . . . . . . . . . . 262
Identifying Variables without Value Labels . . . . . . . . . . . . . . . . . . . . . . 264
Retrieving Definitions of User-Missing Values . . . . . . . . . . . . . . . . . . . 268

xi



Retrieving Variable or Datafile Attributes . . . . . . . . . . . . . . . . . . . . . . . 268
Using Regular Expressions to Select Variables. . . . . . . . . . . . . . . . . . . 271

15 Getting Case Data from the Active Dataset 273

Using the Cursor Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
Reducing a String to Minimum Length. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
Using the spssdata Module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

Getting Started with the Spssdata Class. . . . . . . . . . . . . . . . . . . . . . . . 281
Using Case Data to Calculate a Simple Statistic . . . . . . . . . . . . . . . . . . 284

16 Retrieving Output from SPSS Commands 287

Getting Started with the XML Workspace . . . . . . . . . . . . . . . . . . . . . . . . . . 287
Writing XML Workspace Contents to a File . . . . . . . . . . . . . . . . . . . . . 290

Using the spssaux Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

17 Creating, Modifying, and Saving Viewer
Contents 301

Getting Started with the viewer Module . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
Persistence of Objects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

Creating a Custom Pivot Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
Modifying Pivot Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
Creating a Text Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
Using the viewer Module from a Python IDE . . . . . . . . . . . . . . . . . . . . . . . . 312

xii



18 Tips on Migrating Command Syntax, Macro,
and Scripting Jobs to Python                                  313

Migrating Command Syntax Jobs to Python . . . . . . . . . . . . . . . . . . . . . . . . 313
Migrating Macros to Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
Migrating Sax Basic Scripts to Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321

19 SPSS for SAS Programmers 329

Reading Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
Reading Database Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
Reading Excel Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
Reading Text Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334

Merging Data Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
Merging Files with the Same Cases but Different Variables . . . . . . . . . 335
Merging Files with the Same Variables but Different Cases . . . . . . . . . 336

Aggregating Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
Assigning Variable Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338

Variable Labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
Value Labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339

Cleaning and Validating Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
Finding and Displaying Invalid Values. . . . . . . . . . . . . . . . . . . . . . . . . . 341
Finding and Filtering Duplicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343

Transforming Data Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
Recoding Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
Banding Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
Numeric Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
Random Number Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348
String Concatenation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
String Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350

xiii



Working with Dates and Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
Calculating and Converting Date and Time Intervals. . . . . . . . . . . . . . . 351
Adding to or Subtracting from One Date to Find Another Date . . . . . . . 352
Extracting Date and Time Information . . . . . . . . . . . . . . . . . . . . . . . . . 353

Custom Functions, Job Flow Control, and Global Macro Variables. . . . . . . . 354
Creating Custom Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
Job Flow Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356
Creating Global Macro Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
Setting Global Macro Variables to Values from the Environment. . . . . . 359

Appendix

A Python Functions 361

spss.CreateXPathDictionary Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362
spss.Cursor Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362

spss.Cursor Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
spss.DeleteXPathHandle Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
spss.EvaluateXPath Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
spss.GetCaseCount Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368
spss.GetHandleList Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368
spss.GetLastErrorLevel and spss.GetLastErrorMessage Functions . . . . . . . 369
spss.GetVariableCount Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
spss.GetVariableFormat Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
spss.GetVariableLabel Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
spss.GetVariableMeasurementLevel Function. . . . . . . . . . . . . . . . . . . . . . . 373
spss.GetVariableName Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374
spss.GetVariableType Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374
spss.GetXmlUtf16 Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375

xiv



spss.IsOutputOn Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
spss.PyInvokeSpss.IsXDriven Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
spss.SetMacroValue Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
spss.SetOutput Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
spss.StopSPSS Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
spss.Submit Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378

Index 381

xv





Chapter

1
Overview

This book is divided into two main sections:

Data management using the SPSS command language. Although many of these tasks
can also be performed with the menus and dialog boxes, some very powerful
features are available only with command syntax.

Programming with SPSS and Python. The SPSS Python plug-in provides the ability
to integrate the capabilities of the Python programming language with SPSS.
One of the major benefits of Python is the ability to add jobwise flow control
to the SPSS command stream. SPSS can execute casewise conditional actions
based on criteria that evaluate each case, but jobwise flow control—such as
running different procedures for different variables based on data type or level of
measurement, or determining which procedure to run next based on the results
of the last procedure—is much more difficult. The SPSS Python plug-in makes
jobwise flow control much easier to accomplish.

For readers who may be more familiar with the commands in the SAS system, Chapter
19 provides examples that demonstrate how some common data management and
programming tasks are handled in both SAS and SPSS.

Using This Book

This book is intended for use with SPSS release 14.0.1 or later. Many examples will
work with earlier versions, but some commands and features are not available in earlier
releases. None of the Python examples will work with earlier versions.

Most of the examples shown in this book are designed as hands-on exercises that
you can perform yourself. The CD that comes with the book contains the command
files and data files used in the examples. All of the sample files are contained in the
examples folder.

\examples\commands contains SPSS command syntax files.

1



2

Chapter 1

\examples\data contains data files in a variety of formats.

\examples\python contains sample Python files.

All of the sample command files that contain file access commands assume that you
have copied the examples folder to your C drive. For example:

GET FILE='c:\examples\data\duplicates.sav'.
SORT CASES BY ID_house(A) ID_person(A) int_date(A) .
AGGREGATE OUTFILE = 'C:\temp\tempdata.sav'

Many examples, such as the one above, also assume that you have a C:\temp folder
for writing temporary files. You can access command and data files from the
accompanying CD, substituting the drive location for C: in file access commands. For
commands that write files, however, you need to specify a valid folder location on a
device for which you have write access.

Documentation Resources

The SPSS Base User’s Guide documents the data management tools available through
the graphical user interface. The material is similar to that available in the Help system.

The SPSS Command Syntax Reference, which is installed as a PDF file with the
SPSS system, is a complete guide to the specifications for each SPSS command. The
guide provides many examples illustrating individual commands. It has only a few
extended examples illustrating how commands can be combined to accomplish the
kinds of tasks that analysts frequently encounter. Sections of the SPSS Command
Syntax Reference of particular interest include:

The appendix “Defining Complex Files,” which covers the commands specifically
intended for reading common types of complex files

The INPUT PROGRAM—END INPUT PROGRAM command, which provides rules
for working with input programs

All of the command syntax documentation is also available in the Help system. If you
type a command name or place the cursor inside a command in a syntax window and
press F1, you will be taken directly to the help for that command.



Part I:
Data Management





Chapter

2
Best Practices and Efficiency Tips

If you haven’t worked with SPSS command syntax before, you will probably start with
simple jobs that perform a few basic tasks. Since it is easier to develop good habits
while working with small jobs than to try to change bad habits once you move to more
complex situations, you may find the information in this chapter helpful.

Some of the practices suggested in this chapter are particularly useful for large
projects involving thousands of lines of code, many data files, and production jobs run
on a regular basis and/or on multiple data sources.

Working with Command Syntax

You don’t need to be a programmer to write SPSS command syntax, but there are a few
basic things you should know. A detailed introduction to SPSS command syntax is
available in the “Universals” section in the SPSS Command Syntax Reference.

Creating Command Syntax Files

An SPSS command file is a simple text file. You can use any text editor to create
a command syntax file, but SPSS provides a number of tools to make your job
easier. Most features available in the graphical user interface have command syntax
equivalents, and there are several ways to reveal this underlying command syntax:

Use the Paste button. Make selections from the menus and dialog boxes, and then
click the Paste button instead of the OK button. This will paste the underlying
commands into a command syntax window.

Record commands in the log. Select Display commands in the log on the Viewer
tab in the Options dialog box (Edit menu, Options) or run the command SET
PRINTBACK ON. As you run analyses, the commands for your dialog box
selections will be recorded and displayed in the log in the Viewer window. You can

5



6

Chapter 2

then copy and paste the commands from the Viewer into a syntax window or text
editor. This setting persists across sessions, so you have to specify it only once.

Retrieve commands from the journal file. Most actions that you perform in the
graphical user interface (and all commands that you run from a command syntax
window) are automatically recorded in the journal file in the form of command
syntax. The default name of the journal file is spss.jnl. The default location varies,
depending on your operating system. Both the name and location of the journal file
are displayed on the General tab in the Options dialog box (Edit menu, Options).

Running SPSS Commands

Once you have a set of commands, you can run the commands in a number of ways:

Highlight the commands that you want to run in a command syntax window and
click the Run button.

Invoke one command file from another with the INCLUDE or INSERT command.
For more information, see “Using INSERT with a Master Command Syntax File”
on p. 20.

Use the Production Facility to create production jobs that can run unattended and
even start unattended (and automatically) using common scheduling software. See
the Help system for more information about the Production Facility.

Use SPSSB (available only with the server version) to run command files from a
command line and automatically route results to different output destinations in
different formats. See the SPSSB documentation supplied with the SPSS server
software for more information.



7

Best Practices and Efficiency Tips

Figure 2-1
Command syntax pasted from a dialog box

Syntax Rules
Commands run from a command syntax window during a typical SPSS session
must follow the interactive command syntax rules.

Commands files run via SPSSB or invoked via the INCLUDE command must
follow the batch command syntax rules.

Interactive Rules

The following rules apply to command specifications in interactive mode:

Each command must start on a new line. Commands can begin in any column
of a command line and continue for as many lines as needed. The exception is
the END DATA command, which must begin in the first column of the first line
after the end of data.

Each command should end with a period as a command terminator. It is best to
omit the terminator on BEGIN DATA, however, so that inline data is treated as
one continuous specification.

The command terminator must be the last non-blank character in a command.

In the absence of a period as the command terminator, a blank line is interpreted as
a command terminator.



8

Chapter 2

Note: For compatibility with other modes of command execution (including command
files run with INSERT or INCLUDE commands in an interactive session), each line of
command syntax should not exceed 256 bytes.

Batch Rules

The following rules apply to command specifications in batch or production mode:

All commands in the command file must begin in column 1. You can use plus
(+) or minus (–) signs in the first column if you want to indent the command
specification to make the command file more readable.

If multiple lines are used for a command, column 1 of each continuation line must
be blank.

Command terminators are optional.

A line cannot exceed 256 bytes; any additional characters are truncated.

Customizing the Programming Environment

There are a few global settings and customization features that may make working with
command syntax a little easier.

Displaying Commands in the Log

By default, commands that have been run are not displayed in the log, which can
make it difficult to interpret error messages. To display commands in the log, use
the command:

SET PRINTBACK = ON.

Or, using the graphical user interface:

E From the menus, choose:
Edit

Options...

E Click the Viewer tab.

E Select (check) Display commands in the log.



9

Best Practices and Efficiency Tips

Figure 2-2
Log with and without commands displayed

Displaying the Status Bar in Command Syntax Windows

In addition to various status messages, the status bar at the bottom of a command
syntax window displays the current line number and character position within the line.
Since error messages typically contain information about the column position where
an error was encountered, the column position information in the status bar can help
you to pinpoint errors. (Note: You may have to increase the width of the command
syntax window to see this information.)

The status bar is displayed by default. If it is currently not displayed, choose Status

Bar from the View menu in the command syntax window.



10

Chapter 2

Figure 2-3
Status bar in command syntax window with current line number and column position
displayed

Protecting the Original Data

The original data file should be protected from modifications that may alter or delete
original variables and/or cases. If the original data are in an external file format (for
example, text, Excel, or database), there is little risk of accidentally overwriting the
original data while working in SPSS. However, if the original data are in SPSS-format
data files (.sav), there are many transformation commands that can modify or destroy
the data, and it is not difficult to inadvertently overwrite the contents of an SPSS-format
data file. Overwriting the original data file may result in a loss of data that cannot
be retrieved.

There are several ways in which you can protect the original data, including:

Storing a copy in a separate location, such as on a CD, that can’t be overwritten.

Using the operating system facilities to change the read-write property of the file
to read-only. If you aren’t familiar with how to do this in the operating system,
you can choose Mark File Read Only from the File menu or use the PERMISSIONS
subcommand on the SAVE command.

The ideal situation is then to load the original (protected) data file into SPSS and do
all data transformations, recoding, and calculations using SPSS. The objective is to
end up with one or more command syntax files that start from the original data and
produce the required results without any manual intervention.



11

Best Practices and Efficiency Tips

Do Not Overwrite Original Variables

It is often necessary to recode or modify original variables, and it is good practice to
assign the modified values to new variables and keep the original variables unchanged.
For one thing, this allows comparison of the initial and modified values to verify
that the intended modifications were carried out correctly. The original values can
subsequently be discarded if required.

Example

*These commands overwrite existing variables.
COMPUTE var1=var1*2.
RECODE var2 (1 thru 5 = 1) (6 thru 10 = 2).
*These commands create new variables.
COMPUTE var1_new=var1*2.
RECODE var2 (1 thru 5 = 1) (6 thru 10 = 2)(ELSE=COPY)

/INTO var2_new.

The difference between the two COMPUTE commands is simply the substitution of
a new variable name on the left side of the equals sign.

The second RECODE command includes the INTO subcommand, which specifies a
new variable to receive the recoded values of the original variable. ELSE=COPY
makes sure that any values not covered by the specified ranges are preserved.

Using Temporary Transformations

You can use the TEMPORARY command to temporarily transform existing variables for
analysis. The temporary transformations remain in effect through the first command
that reads the data (for example, a statistical procedure), after which the variables
revert to their original values.

Example

*temporary.sps.
DATA LIST FREE /var1 var2.
BEGIN DATA
1 2
3 4
5 6
7 8
9 10
END DATA.
TEMPORARY.



12

Chapter 2

COMPUTE var1=var1+ 5.
RECODE var2 (1 thru 5=1) (6 thru 10=2).
FREQUENCIES

/VARIABLES=var1 var2
/STATISTICS=MEAN STDDEV MIN MAX.

DESCRIPTIVES
/VARIABLES=var1 var2
/STATISTICS=MEAN STDDEV MIN MAX.

The transformed values from the two transformation commands that follow the
TEMPORARY command will be used in the FREQUENCIES procedure.

The original data values will be used in the subsequent DESCRIPTIVES procedure,
yielding different results for the same summary statistics.

Under some circumstances, using TEMPORARY will improve the efficiency of a
job when short-lived transformations are appropriate. Ordinarily, the results of
transformations are written to the virtual active file for later use and eventually are
merged into the saved SPSS data file. However, temporary transformations will not
be written to disk, assuming that the command that concludes the temporary state is
not otherwise doing this, saving both time and disk space. (TEMPORARY followed by
SAVE, for example, would write the transformations.)

If many temporary variables are created, not writing them to disk could be a
noticeable saving with a large data file. However, some commands require two or more
passes of the data. In this situation, the temporary transformations are recalculated for
the second or later passes. If the transformations are lengthy and complex, the time
required for repeated calculation might be greater than the time saved by not writing
the results to disk. Experimentation may be required to determine which approach
is more efficient.

Using Temporary Variables

For transformations that require intermediate variables, use scratch (temporary)
variables for the intermediate values. Any variable name that begins with a pound
sign (#) is treated as a scratch variable that is discarded at the end of the series of
transformation commands when SPSS encounters an EXECUTE command or other
command that reads the data (such as a statistical procedure).



13

Best Practices and Efficiency Tips

Example

*scratchvar.sps.
DATA LIST FREE / var1.
BEGIN DATA
1 2 3 4 5
END DATA.
COMPUTE factor=1.
LOOP #tempvar=1 TO var1.
- COMPUTE factor=factor * #tempvar.
END LOOP.
EXECUTE.

Figure 2-4
Result of loop with scratch variable

The loop structure computes the factorial for each value of var1 and puts the
factorial value in the variable factor.

The scratch variable #tempvar is used as an index variable for the loop structure.

For each case, the COMPUTE command is run iteratively up to the value of var1.

For each iteration, the current value of the variable factor is multiplied by the
current loop iteration number stored in #tempvar.

The EXECUTE command runs the transformation commands, after which the
scratch variable is discarded.

The use of scratch variables doesn’t technically “protect” the original data in any way,
but it does prevent the data file from getting cluttered with extraneous variables. If you
need to remove temporary variables that still exist after reading the data, you can use
the DELETE VARIABLES command to eliminate them.



14

Chapter 2

Use EXECUTE Sparingly

SPSS is designed to work with large data files (the current version can accommodate
2.15 billion cases). Since going through every case of a large data file takes time, the
software is also designed to minimize the number of times it has to read the data.
Statistical and charting procedures always read the data, but most transformation
commands (for example, COMPUTE, RECODE, COUNT, SELECT IF) do not require a
separate data pass.

The default behavior of the graphical user interface, however, is to read the data
for each separate transformation so that you can see the results in the Data Editor
immediately. Consequently, every transformation command generated from the dialog
boxes is followed by an EXECUTE command. So if you create command syntax by
pasting from dialog boxes or copying from the log or journal, your command syntax
may contain a large number of superfluous EXECUTE commands that can significantly
increase the processing time for very large data files.

In most cases, you can remove virtually all of the auto-generated EXECUTE

commands, which will speed up processing, particularly for large data files and jobs
that contain many transformation commands.

To turn off the automatic, immediate execution of transformations and the associated
pasting of EXECUTE commands:

E From the menus, choose:
Edit

Options...

E Click the Data tab.

E Select Calculate values before used.

Lag Functions

One notable exception to the above rule is transformation commands that contain lag
functions. In a series of transformation commands without any intervening EXECUTE

commands or other commands that read the data, lag functions are calculated after
all other transformations, regardless of command order. While this might not be a
consideration most of the time, it requires special consideration in the following cases:

The lag variable is also used in any of the other transformation commands.



15

Best Practices and Efficiency Tips

One of the transformations selects a subset of cases and deletes the unselected
cases, such as SELECT IF or SAMPLE.

Example

*lagfunction.sps.
*create some data.
DATA LIST FREE /var1.
BEGIN DATA
1 2 3 4 5
END DATA.
COMPUTE var2=var1.
********************************.
*Lag without intervening EXECUTE.
COMPUTE lagvar1=LAG(var1).
COMPUTE var1=var1*2.
EXECUTE.
********************************.
*Lag with intervening EXECUTE.
COMPUTE lagvar2=LAG(var2).
EXECUTE.
COMPUTE var2=var2*2.
EXECUTE.

Figure 2-5
Results of lag functions displayed in Data Editor

Although var1 and var2 contain the same data values, lagvar1 and lagvar2 are
very different from each other.

Without an intervening EXECUTE command, lagvar1 is based on the transformed
values of var1.



16

Chapter 2

With the EXECUTE command between the two transformation commands, the
value of lagvar2 is based on the original value of var2.

Any command that reads the data will have the same effect as the EXECUTE
command. For example, you could substitute the FREQUENCIES command and
achieve the same result.

In a similar fashion, if the set of transformations includes a command that selects a
subset of cases and deletes unselected cases (for example, SELECT IF), lags will be
computed after the case selection. You will probably want to avoid case selection
criteria based on lag values—unless you EXECUTE the lags first.

Using $CASENUM to Select Cases

The value of the system variable $CASENUM is dynamic. If you change the sort order
of cases, the value of $CASENUM for each case changes. If you delete the first case,
the case that formerly had a value of 2 for this system variable now has the value 1.
Using the value of $CASENUM with the SELECT IF command can be a little tricky
because SELECT IF deletes each unselected case, changing the value of $CASENUM
for all remaining cases.

For example, a SELECT IF command of the general form:

SELECT IF ($CASENUM > [positive value]).

will delete all cases because, regardless of the value specified, the value of $CASENUM
for the current case will never be greater than 1. When the first case is evaluated, it has
a value of 1 for $CASENUM and is therefore deleted because it doesn’t have a value
greater than the specified positive value. The erstwhile second case then becomes the
first case, with a value of 1, and is consequently also deleted, and so on.

The simple solution to this problem is to create a new variable equal to the original
value of $CASENUM. However, command syntax of the form:

COMPUTE CaseNumber=$CASENUM.
SELECT IF (CaseNumber > [positive value]).

will still delete all cases because each case is deleted before the value of the new
variable is computed. The correct solution is to insert an EXECUTE command between
COMPUTE and SELECT IF, as in:

COMPUTE CaseNumber=$CASENUM.



17

Best Practices and Efficiency Tips

EXECUTE.
SELECT IF (CaseNumber > [positive value]).

MISSING VALUES Command

If you have a series of transformation commands (for example, COMPUTE, IF, RECODE)
followed by a MISSING VALUES command that involves the same variables, you
may want to place an EXECUTE statement before the MISSING VALUES command.
This is because the MISSING VALUES command changes the dictionary before the
transformations take place.

Example

IF (x = 0) y = z*2.
MISSING VALUES x (0).

The cases where x = 0 would be considered user-missing on x, and the transformation
of y would not occur. Placing an EXECUTE before MISSING VALUES allows the
transformation to occur before 0 is assigned missing status.

WRITE and XSAVE Commands

In some circumstances, it may be necessary to have an EXECUTE command after a
WRITE or an XSAVE command. For more information, see “Using XSAVE in a Loop to
Build a Data File” in Chapter 8 on p. 156.

Using Comments

It is always a good practice to include explanatory comments in your code. In SPSS,
you can do this in several ways:

COMMENT Get summary stats for scale variables.
* An asterisk in the first column also identifies comments.
FREQUENCIES

VARIABLES=income ed reside
/FORMAT=LIMIT(10) /*avoid long frequency tables
/STATISTICS=MEAN /*arithmetic average*/ MEDIAN.

* A macro name like !mymacro in this comment may invoke the macro.
/* A macro name like !mymacro in this comment will not invoke the macro*/.



18

Chapter 2

The first line of a comment can begin with the keyword COMMENT or with an
asterisk (*).

Comment text can extend for multiple lines and can contain any characters.
The rules for continuation lines are the same as for other commands. Be sure
to terminate a comment with a period.

Use /* and */ to set off a comment within a command.

The closing */ is optional when the comment is at the end of the line. The command
can continue onto the next line just as if the inserted comment were a blank.

To ensure that comments that refer to macros by name don’t accidently invoke
those macros, use the /* [comment text] */ format.

Using SET SEED to Reproduce Random Samples or Values
When doing research involving random numbers—for example, when randomly
assigning cases to experimental treatment groups—you should explicitly set the
random number seed value if you want to be able to reproduce the same results.

The random number generator is used by the SAMPLE command to generate random
samples and is used by many distribution functions (for example, NORMAL, UNIFORM)
to generate distributions of random numbers. The generator begins with a seed, a large
integer. Starting with the same seed, the system will repeatedly produce the same
sequence of numbers and will select the same sample from a given data file. At the
start of each session, the seed is set to a value that may vary or may be fixed, depending
on your current settings. The seed value changes each time a series of transformations
contains one or more commands that use the random number generator.

Example

To repeat the same random distribution within a session or in subsequent sessions, use
SET SEED before each series of transformations that use the random number generator
to explicitly set the seed value to a constant value.

*set_seed.sps.
GET FILE = 'c:\examples\data\onevar.sav'.
SET SEED = 123456789.
SAMPLE .1.
LIST.
GET FILE = 'c:\examples\data\onevar.sav'.
SET SEED = 123456789.
SAMPLE .1.

         LIST. 



19

Best Practices and Efficiency Tips

Before the first sample is taken the first time, the seed value is explicitly set with
SET SEED.

The LIST command causes the data to be read and the random number generator
to be invoked once for each original case. The result is an updated seed value.

The second time the data file is opened, SET SEED sets the seed to the same value
as before, resulting in the same sample of cases.

Both SET SEED commands are required because you aren’t likely to know what
the initial seed value is unless you set it yourself.

Note: This example opens the data file before each SAMPLE command because
successive SAMPLE commands are cumulative within the active dataset.

SET SEED versus SET MTINDEX

SPSS provides two random number generators, and SET SEED sets the starting value
for only the default random number generator (SET RNG=MC). If you are using the
newer Mersenne Twister random number generator (SET RNG=MT), the starting value
is set with SET MTINDEX.

Divide and Conquer

A time-proven method of winning the battle against programming bugs is to split the
tasks into separate, manageable pieces. It is also easier to navigate around a syntax file
of 200–300 lines than one of 2,000–3,000 lines.

Therefore, it is good practice to break down a program into separate stand-alone
files, each performing a specific task or set of tasks. For example, you could create
separate command syntax files to:

Prepare and standardize data.

Merge data files.

Perform tests on data.

Report results for different groups (for example, gender, age group, income
category).



20

Chapter 2

Using the INSERT command and a master command syntax file that specifies all of the
other command files, you can partition all of these tasks into separate command files.

Using INSERT with a Master Command Syntax File

The INSERT command provides a method for linking multiple syntax files together,
making it possible to reuse blocks of command syntax in different projects by using a
“master” command syntax file that consists primarily of INSERT commands that refer
to other command syntax files.

Example

INSERT FILE = "c:\examples\data\prepare data.sps" CD=YES.
INSERT FILE = "combine data.sps".
INSERT FILE = "do tests.sps".
INSERT FILE = "report groups.sps".

Each INSERT command specifies a file that contains SPSS command syntax.

By default, inserted files are read using interactive syntax rules, and each
command should end with a period.

The first INSERT command includes the additional specification CD=YES. This
changes the working directory to the directory included in the file specification,
making it possible to use relative (or no) paths on the subsequent INSERT
commands.

INSERT versus INCLUDE

INSERT is a newer, more powerful and flexible alternative to INCLUDE. Files included
with INCLUDE must always adhere to batch syntax rules, and command processing
stops when the first error in an included file is encountered. You can effectively
duplicate the INCLUDE behavior with SYNTAX=BATCH and ERROR=STOP on the
INSERT command.

Defining Global Settings

In addition to using INSERT to create modular master command syntax files, you
can define global settings that will enable you to use those same command files for
different reports and analyses.



21

Best Practices and Efficiency Tips

Example

You can create a separate command syntax file that contains a set of FILE HANDLE

commands that define file locations and a set of macros that define global variables
for client name, output language, and so on. When you need to change any settings,
you change them once in the global definition file, leaving the bulk of the command
syntax files unchanged.

*define_globals.sps.
FILE HANDLE data /NAME='c:\examples\data'.
FILE HANDLE commands /NAME='c:\examples\commands'.
FILE HANDLE spssdir /NAME='c:\program files\spss'.
FILE HANDLE tempdir /NAME='d:\temp'.

DEFINE !enddate()DATE.DMY(1,1,2004)!ENDDEFINE.
DEFINE !olang()English!ENDDEFINE.
DEFINE !client()"ABC Inc"!ENDDEFINE.
DEFINE !title()TITLE !client.!ENDDEFINE.

The first two FILE HANDLE commands define the paths for the data and command
syntax files. You can then use these file handles instead of the full paths in any
file specifications.

The third FILE HANDLE command contains the path to the SPSS folder. This
path can be useful if you use any of the command syntax or script files that are
installed with SPSS.

The last FILE HANDLE command contains the path of a temporary folder. It is
very useful to define a temporary folder path and use it to save any intermediary
files created by the various command syntax files making up the project. The main
purpose of this is to avoid crowding the data folders with useless files, some of
which might be very large. Note that here the temporary folder resides on the D
drive. When possible, it is more efficient to keep the temporary and main folders
on different hard drives.

The DEFINE–!ENDDEFINE structures define a series of macros. This example uses
simple string substitution macros, where the defined strings will be substituted
wherever the macro names appear in subsequent commands during the session.

!enddate contains the end date of the period covered by the data file. This can be
useful to calculate ages or other duration variables as well as to add footnotes to
tables or graphs.

!olang specifies the output language.



22

Chapter 2

!client contains the client’s name. This can be used in titles of tables or graphs.

!title specifies a TITLE command, using the value of the macro !client as the
title text.

The master command syntax file might then look something like this:

INSERT FILE = "c:\examples\commands\define_globals.sps".
!title.
INSERT FILE = "data\prepare data.sps".
INSERT FILE = "commands\combine data.sps".
INSERT FILE = "commands\do tests.sps".
INCLUDE FILE = "commands\report groups.sps".

The first INSERT runs the command syntax file that defines all of the global
settings. This needs to be run before any commands that invoke the macros
defined in that file.

!title will print the client’s name at the top of each page of output.

"data" and "commands" in the remaining INSERT commands will be expanded
to "c:\examples\data" and "c:\examples\commands", respectively.

Note: Using absolute paths or file handles that represent those paths is the most reliable
way to make sure that SPSS finds the necessary files. Relative paths may not work as
you might expect, since they refer to the current working directory, which can change
frequently. You can also use the CD command or the CD keyword on the INSERT
command to change the working directory.



Chapter

3
Getting Data into SPSS

Before you can work with data in SPSS, you need some data to work with. There are
several ways to get data into the application:

Open a data file that has already been saved in SPSS format.

Enter data manually in the Data Editor.

Read a data file from another source, such as a database, text data file, spreadsheet,
SAS, or Stata.

Opening an SPSS-format data file is simple, and manually entering data in the Data
Editor is not likely to be your first choice, particularly if you have a large amount
of data. This chapter focuses on how to read data files created and saved in other
applications and formats.

Getting Data from Databases

SPSS relies primarily on ODBC (open database connectivity) to read data from
databases. ODBC is an open standard with versions available on many platforms,
including Windows, UNIX, and Macintosh.

Installing Database Drivers

You can read data from any database format for which you have a database driver. In
local analysis mode, the necessary drivers must be installed on your local computer.
In distributed analysis mode (available with the Server version), the drivers must be
installed on the remote server.

ODBC database drivers for a wide variety of database formats are included on the
SPSS installation CD, including:

Access

23



24

Chapter 3

Btrieve

DB2

dBASE

Excel

FoxPro

Informix

Oracle

Paradox

Progress

SQL Base

SQL Server

Sybase

Most of these drivers can be installed by installing the SPSS Data Access Pack.
You can install the SPSS Data Access Pack from the AutoPlay menu on the SPSS
installation CD.

If you need a Microsoft Access driver, you will need to install the Microsoft Data
Access Pack. An installable version is located in the Microsoft Data Access Pack
folder on the SPSS installation CD.

Before you can use the installed database drivers, you may also need to configure
the drivers using the Windows ODBC Data Source Administrator. For the SPSS Data
Access Pack, installation instructions and information on configuring data sources are
located in the Installation Instructions folder on the SPSS installation CD.

OLE DB

Starting with SPSS 14.0, some support for OLE DB data sources is provided.

To access OLE DB data sources, you must have the following items installed on the
computer that is running SPSS:

.NET framework

Dimensions Data Model and OLE DB Access

Versions of these components that are compatible with this release of SPSS can be
installed from the SPSS installation CD and are available on the AutoPlay menu.



25

Getting Data into SPSS

Table joins are not available for OLE DB data sources. You can read only one
table at a time.

You can add OLE DB data sources only in local analysis mode. To add OLE
DB data sources in distributed analysis mode on a Windows server, consult your
system administrator.

In distributed analysis mode (available with SPSS Server), OLE DB data sources
are available only on Windows servers, and both .NET and the Dimensions Data
Model and OLE DB Access must be installed on the server.

Database Wizard

It’s probably a good idea to use the Database Wizard (File menu, Open Database) the
first time you retrieve data from a database source. At the last step of the wizard, you
can paste the equivalent commands into a command syntax window. Although the
SQL generated by the wizard tends to be overly verbose, it also generates the CONNECT
string, which you might never figure out without the wizard.

Reading a Single Database Table

SPSS reads data from databases by reading database tables. You can read information
from a single table or merge data from multiple tables in the same database. A single
database table has basically the same two-dimensional structure as an SPSS data file:
records are cases and fields are variables. So, reading a single table can be very simple.

Example

This example reads a single table from an Access database. It reads all records and
fields in the table.

*access1.sps.
GET DATA /TYPE=ODBC /CONNECT=
'DSN=MS Access Database;DBQ=C:\examples\data\dm_demo.mdb;'+
'DriverId=25;FIL=MS Access;MaxBufferSize=2048;PageTimeout=5;'
/SQL = 'SELECT * FROM CombinedTable'.

EXECUTE.

The GET DATA command is used to read the database.



26

Chapter 3

TYPE=ODBC indicates that an ODBC driver will be used to read the data. This is
required for reading data from any database, and it can also be used for other data
sources with ODBC drivers, such as Excel workbooks. For more information, see
“Reading Multiple Worksheets” on p. 33.

CONNECT identifies the data source. For this example, the CONNECT string was
copied from the command syntax generated by the Database Wizard. The entire
string must be enclosed in single or double quotes. In this example, we have split
the long string onto two lines using a plus sign (+) to combine the two strings.

The SQL subcommand can contain any SQL statements supported by the database
format. Each line must be enclosed in single or double quotes.

SELECT * FROM CombinedTable reads all of the fields (columns) and all
records (rows) from the table named CombinedTable in the database.

Any field names that are not valid SPSS variable names are automatically
converted to valid variable names, and the original field names are used as variable
labels. In this database table, many of the field names contain spaces, which are
removed in the variable names.

Figure 3-1
Database field names converted to valid variable names

Example

Now we’ll read the same database table—except this time, we’ll read only a subset of
fields and records.



27

Getting Data into SPSS

*access2.sps.
GET DATA /TYPE=ODBC /CONNECT=
'DSN=MS Access Database;DBQ=C:\examples\data\dm_demo.mdb;'+
'DriverId=25;FIL=MS Access;MaxBufferSize=2048;PageTimeout=5;'
/SQL =
'SELECT Age, Education, [Income Category]'
' FROM CombinedTable'
' WHERE ([Marital Status] <> 1 AND Internet = 1 )'.

EXECUTE.

The SELECT clause explicitly specifies only three fields from the file; so, the active
dataset will contain only three variables.

The WHERE clause will select only records where the value of the Marital Status
field is not 1 and the value of the Internet field is 1. In this example, that means
only unmarried people who have Internet service will be included.

Two additional details in this example are worth noting:

The field names Income Category and Marital Status are enclosed in brackets.
Since these field names contain spaces, they must be enclosed in brackets or
quotes. Since single quotes are already being used to enclose each line of the SQL
statement, the alternative to brackets here would be double quotes.

We’ve put the FROM and WHERE clauses on separate lines to make the code easier
to read; however, in order for this command to be read properly, each of those lines
also has a blank space between the starting single quote and the first word on the
line. When the command is processed, all of the lines of the SQL statement are
merged together in a very literal fashion. Without the space before WHERE, the
program would attempt to read a table named CombinedTableWhere, and an error
would result. As a general rule, you should probably insert a blank space between
the quotation mark and the first word of each continuation line.

Reading Multiple Tables

You can combine data from two or more database tables by “joining” the tables. The
active dataset can be constructed from more than two tables, but each “join” defines a
relationship between only two of those tables:

Inner join. Records in the two tables with matching values for one or more specified
fields are included. For example, a unique ID value may be used in each table, and
records with matching ID values are combined. Any records without matching
identifier values in the other table are omitted.



28

Chapter 3

Left outer join. All records from the first table are included regardless of the criteria
used to match records.

Right outer join. Essentially the opposite of a left outer join. So, the appropriate
one to use is basically a matter of the order in which the tables are specified in the
SQL SELECT clause.

Example

In the previous two examples, all of the data resided in a single database table. But
what if the data were divided between two tables? This example merges data from two
different tables: one containing demographic information for survey respondents and
one containing survey responses.

*access_multtables1.sps.
GET DATA /TYPE=ODBC /CONNECT=
'DSN=MS Access Database;DBQ=C:\examples\data\dm_demo.mdb;'+
'DriverId=25;FIL=MS Access;MaxBufferSize=2048;PageTimeout=5;'

/SQL =
'SELECT * FROM DemographicInformation, SurveyResponses'
' WHERE DemographicInformation.ID=SurveyResponses.ID'.

EXECUTE.

The SELECT clause specifies all fields from both tables.

The WHERE clause matches records from the two tables based on the value of the
ID field in both tables. Any records in either table without matching ID values in
the other table are excluded.

The result is an inner join in which only records with matching ID values in both
tables are included in the active dataset.

Example

In addition to one-to-one matching, as in the previous inner join example, you can also
merge tables with a one-to-many matching scheme. For example, you could match
a table in which there are only a few records representing data values and associated
descriptive labels with values in a table containing hundreds or thousands of records
representing survey respondents.

In this example, we read data from an SQL Server database, using an outer join to
avoid omitting records in the larger table that don’t have matching identifier values in
the smaller table.



29

Getting Data into SPSS

*sqlserver_outer_join.sps.
GET DATA /TYPE=ODBC
/CONNECT= 'DSN=SQLServer;UID=;APP=SPSS For Windows;'
'WSID=ROLIVERLAP;Network=DBMSSOCN;Trusted_Connection=Yes'

/SQL =
'SELECT SurveyResponses.ID, SurveyResponses.Internet,'
' [Value Labels].[Internet Label]'
' FROM SurveyResponses LEFT OUTER JOIN [Value Labels]'
' ON SurveyResponses.Internet'
' = [Value Labels].[Internet Value]'.

Figure 3-2
SQL Server tables to be merged with outer join



30

Chapter 3

Figure 3-3
Active dataset in SPSS

FROM SurveyResponses LEFT OUTER JOIN [Value Labels] will include
all records from the table SurveyResponses even if there are no records in the Value
Labels table that meet the matching criteria.

ON SurveyResponses.Internet = [Value Labels].[Internet
Value] matches records based on the value of the field Internet in the table
SurveyResponses and the value of the field Internet Value in the table Value Labels.

The resulting active dataset has an Internet Label value of No for all cases with a
value of 0 for Internet and Yes for all cases with a value of 1 for Internet.

Since the left outer join includes all records from SurveyResponses, there are cases
in the active dataset with values of 8 or 9 for Internet and no value (a blank string)
for Internet Label, since the values of 8 and 9 do not occur in the Internet Value
field in the table Value Labels.

Reading Excel Files

SPSS can read individual Excel worksheets and multiple worksheets in the same
Excel workbook. The basic mechanics of reading Excel files are relatively
straightforward—rows are read as cases and columns are read as variables. However,
reading a typical Excel spreadsheet—where the data may not start in row 1,



31

Getting Data into SPSS

column 1—requires a little extra work, and reading multiple worksheets requires
treating the Excel workbook as a database. In both instances, we can use the GET
DATA command to read the data into SPSS.

Reading a “Typical” Worksheet

When reading an individual worksheet, SPSS reads a rectangular area of the worksheet,
and everything in that area must be data related. The first row of the area may or may
not contain variable names (depending on your specifications); the remainder of the
area must contain the data to be read. A typical worksheet, however, may also contain
titles and other information that may not be appropriate for an SPSS data file and may
even cause the data to be read incorrectly if you don’t explicitly specify the range of
cells to read.

Example

Figure 3-4
Typical Excel worksheet



32

Chapter 3

To read this spreadsheet without the title row or total row and column:

*readexcel.sps.
GET DATA

/TYPE=XLS
/FILE='c:\examples\data\sales.xls'
/SHEET=NAME 'Gross Revenue'
/CELLRANGE=RANGE 'A2:I15'
/READNAMES=on .

The TYPE subcommand identifies the file type as Excel, version 5 or later. (For
earlier versions, use GET TRANSLATE.)

The SHEET subcommand identifies which worksheet of the workbook to read.
Instead of the NAME keyword, you could use the INDEX keyword and an integer
value indicating the sheet location in the workbook. Without this subcommand,
the first worksheet is read.

The CELLRANGE subcommand indicates that SPSS should start reading at column
A, row 2, and read through column I, row 15.

The READNAMES subcommand indicates that the first row of the specified range
contains column labels to be used as variable names.

Figure 3-5
Excel worksheet read into SPSS



33

Getting Data into SPSS

The Excel column label Store Number is automatically converted to the SPSS
variable name StoreNumber, since variable names cannot contain spaces. The
original column label is retained as the variable label.

The original data type from Excel is preserved whenever possible, but since data
type is determined at the individual cell level in Excel and at the column (variable)
level in SPSS, this isn’t always possible.

When SPSS encounters mixed data types in the same column, the variable is
assigned the string data type; so, the variable Toys in this example is assigned
the string data type.

READNAMES Subcommand

The READNAMES subcommand tells SPSS to treat the first row of the spreadsheet or
specified range as either variable names (ON) or data (OFF). This subcommand will
always affect the way the Excel spreadsheet is read, even when it isn’t specified, since
the default setting is ON.

With READNAMES=ON (or in the absence of this subcommand), if the first row
contains data instead of column headings, SPSS will attempt to read the cells in
that row as variable names instead of as data—alphanumeric values will be used
to create variable names, numeric values will be ignored, and default variable
names will be assigned.

With READNAMES=OFF, if the first row does, in fact, contain column headings or
other alphanumeric text, then those column headings will be read as data values,
and all of the variables will be assigned the string data type.

Reading Multiple Worksheets

An Excel file (workbook) can contain multiple worksheets, and you can read multiple
worksheets from the same workbook by treating the Excel file as a database. This
requires an ODBC driver for Excel.



34

Chapter 3

Figure 3-6
Multiple worksheets in same workbook

When reading multiple worksheets, you lose some of the flexibility available for
reading individual worksheets:

You cannot specify cell ranges.

The first non-empty row of each worksheet should contain column labels that
will be used as variable names.

Only basic data types—string and numeric—are preserved, and string variables
may be set to an arbitrarily long width.

Example

In this example, the first worksheet contains information about store location, and the
second and third contain information for different departments. All three contain a
column, Store Number, that uniquely identifies each store, so, the information in the
three sheets can be merged correctly regardless of the order in which the stores are
listed on each worksheet.



35

Getting Data into SPSS

 *readexcel2.sps.
GET DATA

/TYPE=ODBC
/CONNECT=

'DSN=Excel Files;DBQ=c:\examples\data\sales.xls;' +
'DriverId=790;MaxBufferSize=2048;PageTimeout=5;'
/SQL =
'SELECT Location$.[Store Number], State, Region, City,'
' Power, Hand, Accessories,'
' Tires, Batteries, Gizmos, Dohickeys'
' FROM [Location$], [Tools$], [Auto$]'
' WHERE [Tools$].[Store Number]=[Location$].[Store Number]'
' AND [Auto$].[Store Number]=[Location$].[Store Number]'.

If these commands look like random characters scattered on the page to you, try
using the Database Wizard (File menu, Open Database) and, in the last step, paste
the commands into a syntax window.

Even if you are familiar with SQL statements, you may want to use the Database
Wizard the first time to generate the proper CONNECT string.

The SELECT statement specifies the columns to read from each worksheet, as
identified by the column headings. Since all three worksheets have a column
labeled Store Number, the specific worksheet from which to read this column
is also included.

If the column headings can’t be used as variable names, you can either let SPSS
automatically create valid variable names or use the AS keyword followed by a
valid variable name. In this example, Store Number is not a valid SPSS variable
name; so, a variable name of StoreNumber is automatically created, and the
original column heading is used as the variable label.

The FROM clause identifies the worksheets to read.

The WHERE clause indicates that the data should be merged by matching the values
of the column Store Number in the three worksheets.



36

Chapter 3

Figure 3-7
Merged worksheets in SPSS

Reading Text Data Files

A text data file is simply a text file that contains data. Text data files fall into two
broad categories:

Simple text data files, in which all variables are recorded in the same order for all
cases, and all cases contain the same variables. This is basically how all data files
appear once they are read into SPSS.

Complex text data files, including files in which the order of variables may vary
between cases and hierarchical or nested data files in which some records contain
variables with values that apply to one or more cases contained on subsequent
records that contain a different set of variables (for example, city, state, and street
address on one record and name, age, and gender of each household member
on subsequent records).

Text data files can be further subdivided into two more categories:

Delimited. Spaces, commas, tabs, or other characters are used to separate variables.
The variables are recorded in the same order for each case but not necessarily in
the same column locations. This is also referred to as freefield format. Some



37

Getting Data into SPSS

applications export text data in comma-separated values (CSV) format; this is a
delimited format.

Fixed width. Each variable is recorded in the same column location on the same
line (record) for each case in the data file. No delimiter is required between values.
In fact, in many text data files generated by computer programs, data values may
appear to run together without even spaces separating them. The column location
determines which variable is being read.

Complex data files are typically also fixed-width format data files.

Simple Text Data Files

In most cases, the Text Wizard (File menu, Read Text Data) provides all of the
functionality that you need to read simple text data files. You can preview the original
text data file and resulting SPSS data file as you make your choices in the wizard,
and you can paste the command syntax equivalent of your choices into a command
syntax window at the last step.

Two commands are available for reading text data files: GET DATA and DATA

LIST. In many cases, they provide the same functionality, and the choice of one versus
the other is a matter of personal preference. In some instances, however, you may need
to take advantage of features in one command that aren’t available in the other.

GET DATA

Use GET DATA instead of DATA LIST if:

The file is in CSV format.

The text data file is very large.

DATA LIST

Use DATA LIST instead of GET DATA if:

The text data is “inline” data contained in a command syntax file using BEGIN
DATA–END DATA.

The file has a complex structure, such as a mixed or hierarchical structure. For
more information, see “Reading Complex Text Data Files” on p. 49.

You want to use the TO keyword to define a large number of sequential variable
names (for example, var1 TO var1000).



38

Chapter 3

Many examples in other chapters use DATA LIST to define sample data simply
because it supports the use of inline data contained in the command syntax file rather
than in an external data file, making the examples self-contained and requiring no
additional files to work.

Delimited Text Data

In a simple delimited (or “freefield”) text data file, the absolute position of each
variable isn’t important; only the relative position matters. Variables should be
recorded in the same order for each case, but the actual column locations aren’t
relevant. More than one case can appear on the same record, and some records can
span multiple records, while others do not.

Example

One of the advantages of delimited text data files is that they don’t require a great deal
of structure. The sample data file, simple_delimited.txt, looks like this:

1 m 28 1 2 2 1 2 2 f 29 2 1 2 1 2
003 f 45 3 2 1 4 5 128 m 17 1 1
1 9 4

The DATA LIST command to read the data file is:

*simple_delimited.sps.
DATA LIST FREE

FILE = 'c:\examples\data\simple_delimited.txt'
/id (F3) sex (A1) age (F2) opinion1 TO opinion5 (5F).

EXECUTE.

FREE indicates that the text data file is a delimited file, in which only the order of
variables matters. By default, commas and spaces are read as delimiters between
data values. In this example, all of the data values are separated by spaces.

Eight variables are defined; so, after reading eight values, the next value is read
as the first variable for the next case, even if it’s on the same line. If the end of
a record is reached before eight values have been read for the current case, the
first value on the next line is read as the next value for the current case. In this
example, four cases are contained on three records.



39

Getting Data into SPSS

If all of the variables were simple numeric variables, you wouldn’t need to specify
the format for any of them, but if there are any variables for which you need to
specify the format, any preceding variables also need format specifications. Since
you need to specify a string format for sex, you also need to specify a format for id.

In this example, you don’t need to specify formats for any of the numeric variables
that appear after the string variable, but the default numeric format is F8.2, which
means that values are displayed with two decimals even if the actual values are
integers. (F2) specifies an integer with a maximum of two digits, and (5F)
specifies five integers, each containing a single digit.

The “defined format for all preceding variables” rule can be quite cumbersome,
particularly if you have a large number of simple numeric variables interspersed with a
few string variables or other variables that require format specifications. You can use a
shortcut to get around this rule:

DATA LIST FREE
FILE = 'c:\examples\data\simple_delimited.txt'
/id * sex (A1) age opinion1 TO opinion5.

The asterisk indicates that all preceding variables should be read in the default numeric
format (F8.2). In this example, it doesn’t save much over simply defining a format
for the first variable, but if sex were the last variable instead of the second, it could
be useful.

Example

One of the drawbacks of DATA LIST FREE is that if a single value for a single case
is accidently missed in data entry, all subsequent cases will be read incorrectly, since
values are read sequentially from the beginning of the file to the end regardless of what
line each value is recorded on. For delimited files in which each case is recorded on a
separate line, you can use DATA LIST LIST, which will limit problems caused by
this type of data entry error to the current case.

The data file, delimited_list.txt, contains one case that has only seven values
recorded, whereas all of the others have eight:

001 m 28 1 2 2 1 2
002 f 29 2 1 2 1 2
003 f 45 3 2 4 5
128 m 17 1 1 1 9 4



40

Chapter 3

The DATA LIST command to read the file is:

*delimited_list.sps.
DATA LIST LIST

FILE='c:\examples\data\delimited_list.txt'
/id(F3) sex (A1) age opinion1 TO opinion5 (6F1).

EXECUTE.

Figure 3-8
Text data file read with DATA LIST LIST

Eight variables are defined; so, eight values are expected on each line.

The third case, however, has only seven values recorded. The first seven values
are read as the values for the first seven defined variables. The eighth variable
is assigned the system-missing value.

You don’t know which variable for the third case is actually missing. In this example,
it could be any variable after the second variable (since that’s the only string variable,
and an appropriate string value was read), making all of the remaining values for
that case suspect; so, a warning message is issued whenever a case doesn’t contain
enough data values:

>Warning # 1116
>Under LIST input, insufficient data were contained on one record to
>fulfill the variable list.
>Remaining numeric variables have been set to the system-missing
>value and string variables have been set to blanks.
>Command line: 6 Current case: 3 Current splitfile group: 1



41

Getting Data into SPSS

CSV Delimited Text Files

A CSV file uses commas to separate data values and encloses values that include
commas in quotation marks. Many applications export text data in this format. To read
CSV files correctly, you need to use the GET DATA command.

Example

The file CSV_file.csv was exported from Microsoft Excel:

ID,Name,Gender,Date Hired,Department
1,"Foster, Chantal",f,10/29/1998,1
2,"Healy, Jonathan",m,3/1/1992,3
3,"Walter, Wendy",f,1/23/1995,2
4,"Oliver, Kendall",f,10/28/2003,2

This data file contains variable descriptions on the first line and a combination of string
and numeric data values for each case on subsequent lines, including string values that
contain commas. The GET DATA command syntax to read this file is:

*delimited_csv.sps.
GET DATA /TYPE = TXT

/FILE = 'C:\examples\data\CSV_file.csv'
/DELIMITERS = ","
/QUALIFIER = '"'
/ARRANGEMENT = DELIMITED
/FIRSTCASE = 2
/VARIABLES = ID F3 Name A15 Gender A1
Date_Hired ADATE10 Department F1.

DELIMITERS = "," specifies the comma as the delimiter between values.

QUALIFIER = '"' specifies that values that contain commas are enclosed in
double quotes so that the embedded commas won’t be interpreted as delimiters.

FIRSTCASE = 2 skips the top line that contains the variable descriptions;
otherwise, this line would be read as the first case.

ADATE10 specifies that the variable Date_Hired is a date variable of the general
format mm/dd/yyyy. For more information, see “Reading Different Types of
Text Data” on p. 48.



42

Chapter 3

Note: The command syntax in this example was adapted from the command syntax
generated by the Text Wizard (File menu, Read Text Data), which automatically
generated valid SPSS variable names from the information on the first line of the
data file.

Fixed-Width Text Data

In a fixed-width data file, variables start and end in the same column locations for
each case. No delimiters are required between values, and there is often no space
between the end of one value and the start of the next. For fixed-width data files, the
command that reads the data file (GET DATA or DATA LIST) contains information
on the column location and/or width of each variable.

Example

In the simplest type of fixed-width text data file, each case is contained on a single line
(record) in the file. In this example, the text data file simple_fixed.txt looks like this:

001 m 28 12212
002 f 29 21212
003 f 45 32145
128 m 17 11194

Using DATA LIST, the command syntax to read the file is:

*simple_fixed.sps.
DATA LIST FIXED

FILE='c:\examples\data\simple_fixed.txt'
/id 1-3 sex 5 (A) age 7-8 opinion1 TO opinion5 10-14.

EXECUTE.

The keyword FIXED is included in this example, but since it is the default format,
it can be omitted.

The forward slash before the variable id separates the variable definitions from the
rest of the command specifications (unlike other commands where subcommands
are separated by forward slashes). The forward slash actually denotes the start of
each record that will be read, but in this case there is only one record per case.

The variable id is located in columns 1 through 3. Since no format is specified, the
standard numeric format is assumed.



43

Getting Data into SPSS

The variable sex is found in column 5. The format (A) indicates that this is a string
variable, with values that contain something other than numbers.

The numeric variable age is in columns 7 and 8.

opinion1 TO opinion5 10-14 defines five numeric variables, with each
variable occupying a single column: opinion1 in column 10, opinion2 in column
11, and so on.

You could define the same data file using variable width instead of column locations:

*simple_fixed_alt.sps.
DATA LIST FIXED

FILE='c:\examples\data\simple_fixed.txt'
/id (F3, 1X) sex (A1, 1X) age (F2, 1X)
opinion1 TO opinion5 (5F1).

EXECUTE.

id (F3, 1X) indicates that the variable id is in the first three column positions,
and the next column position (column 4) should be skipped.

Each variable is assumed to start in the next sequential column position; so, sex
is read from column 5.

Figure 3-9
Fixed-width text data file displayed in Data Editor

Example

Reading the same file with GET DATA, the command syntax would be:

*simple_fixed_getdata.sps.



44

Chapter 3

GET DATA /TYPE = TXT
/FILE = 'C:\examples\data\simple_fixed.txt'
/ARRANGEMENT = FIXED
/VARIABLES =/1 id 0-2 F3 sex 4-4 A1 age 6-7 F2
opinion1 9-9 F opinion2 10-10 F opinion3 11-11 F
opinion4 12-12 F opinion5 13-13 F.

The first column is column 0 (in contrast to DATA LIST, in which the first column
is column 1).

There is no default data type. You must explicitly specify the data type for all
variables.

You must specify both a start and an end column position for each variable, even if
the variable occupies only a single column (for example, sex 4-4).

All variables must be explicitly specified; you cannot use the keyword TO to define
a range of variables.

Reading Selected Portions of a Fixed-Width File

With fixed-format text data files, you can read all or part of each record and/or skip
entire records.

Example

In this example, each case takes two lines (records), and the first line of the file should
be skipped because it doesn’t contain data. The data file, skip_first_fixed.txt, looks
like this:

Employee age, department, and salary information
John Smith
26 2 40000
Joan Allen
32 3 48000
Bill Murray
45 3 50000

The DATA LIST command syntax to read the file is:

*skip_first_fixed.sps.
DATA LIST FIXED
FILE = 'c:\examples\data\skip_first_fixed.txt'
RECORDS=2
SKIP=1



45

Getting Data into SPSS

/name 1-20 (A)
/age 1-2 dept 4 salary 6-10.

EXECUTE.

The RECORDS subcommand indicates that there are two lines per case.

The SKIP subcommand indicates that the first line of the file should not be
included.

The first forward slash indicates the start of the list of variables contained on the
first record for each case. The only variable on the first record is the string variable
name.

The second forward slash indicates the start of the variables contained on the
second record for each case.

Figure 3-10
Fixed-width, multiple-record text data file displayed in Data Editor

Example

With fixed-width text data files, you can easily read selected portions of the data. For
example, using the skip_first_fixed.txt data file from the above example, you could
read just the age and salary information.

*selected_vars_fixed.sps.
DATA LIST FIXED
FILE = 'c:\examples\data\skip_first_fixed.txt'
RECORDS=2
SKIP=1
/2 age 1-2 salary 6-10.

EXECUTE.



46

Chapter 3

As in the previous example, the command specifies that there are two records per
case and that the first line in the file should not be read.

/2 indicates that variables should be read from the second record for each case.
Since this is the only list of variables defined, the information on the first record
for each case is ignored, and the employee’s name is not included in the data to
be read.

The variables age and salary are read exactly as before, but no information is read
from columns 3–5 between those two variables because the command does not
define a variable in that space; so, the department information is not included
in the data to be read.

DATA LIST FIXED and Implied Decimals

If you specify a number of decimals for a numeric format with DATA LIST FIXED

and some data values for that variable do not contain decimal indicators, those values
are assumed to contain implied decimals.

Example

*implied_decimals.sps.
DATA LIST FIXED /var1 (F5.2).
BEGIN DATA
123
123.0
1234
123.4
end data.

The values of 123 and 1234 will be read as containing two implied decimals
positions, resulting in values of 1.23 and 12.34.

The values of 123.0 and 123.4, however, contain explicit decimal indicators,
resulting in values of 123.0 and 123.4.

DATA LIST FREE (and LIST) and GET DATA /TYPE=TEXT do not read implied
decimals; so a value of 123 with a format of F5.2 will be read as 123.



47

Getting Data into SPSS

Text Data Files with Very Wide Records

Some machine-generated text data files with a large number of variables may
have a single, very wide record for each case. If the record width exceeds 8,192
columns/characters, you need to specify the record length with the FILE HANDLE

command before reading the data file.

*wide_file.sps.
*Read text data file with record length of 10,000.
*This command will stop at column 8,192.
DATA LIST FIXED

FILE='c:\examples\data\wide_file.txt'
/var1 TO var1000 (1000F10).

EXECUTE.
*Define record length first.
FILE HANDLE wide_file NAME = 'c:\examples\data\wide_file.txt'

/MODE = CHARACTER /LRECL = 10000.
DATA LIST FIXED

FILE = wide_file
/var1 TO var1000 (1000F10).

EXECUTE.

Each record in the data file contains 1,000 10-digit values, for a total record length
of 10,000 characters.

The first DATA LIST command will read only the first 819 values (8,190
characters), and the remaining variables will be set to the system-missing value. A
warning message is issued for each variable that is set to system-missing, which in
this example means 181 warning messages.

FILE HANDLE assigns a “handle” of wide_file to the data file wide_file.txt.

The LRECL subcommand specifies that each record is 10,000 characters wide.

The FILE subcommand on the second DATA LIST command refers to the file
handle wide_file instead of the actual filename, and all 1,000 variables are read
correctly.



48

Chapter 3

Reading Different Types of Text Data

SPSS can read text data recorded in a wide variety of formats. Some of the more
common formats are listed in the following table:

Type Example Format specification

123 F3Numeric

123.45 F6.2

12,345 COMMA6Period as decimal indicator, comma as
thousands separator

1,234.5 COMMA7.1

123,4 DOT6Comma as decimal indicator, period as
thousands separator

1.234,5 DOT7.1

$12,345 DOLLAR7Dollar

$12,234.50 DOLLAR9.2

String (alphanumeric) Female A6

International date 28-OCT-1986 DATE11

American date 10/28/1986 ADATE10

Date and time 28 October, 1986 23:56 DATETIME22

For more information on date and time formats, see “Date and Time” in the
“Universals” section of the SPSS Command Syntax Reference. For a complete list of
data formats supported by SPSS, see “Variables” in the “Universals” section of the
SPSS Command Syntax Reference.

Example

*delimited_formats.sps.
DATA LIST LIST (" ")

/numericVar (F4) dotVar(DOT7.1) stringVar(a4) dateVar(DATE11).
BEGIN DATA
1 2 abc 28/10/03
111 2.222,2 abcd 28-OCT-2003
111.11 222.222,222 abcdefg 28-October-2003
END DATA.



49

Getting Data into SPSS

Figure 3-11
Different data types displayed in Data Editor

All of the numeric and date values are read correctly even if the actual values
exceed the maximum width (number of digits and characters) defined for the
variables.

Although the third case appears to have a truncated value for numericVar, the
entire value of 111.11 is stored internally. Since the defined format is also used as
the display format, and (F4) defines a format with no decimals, 111 is displayed
instead of the full value. Values aren’t actually truncated for display; they’re
rounded. A value of 111.99 would display as 112.

The dateVar value of 28-October-2003 is displayed as 28-OCT-2003 to fit the
defined width of 11 digits/characters.

For string variables, the defined width is more critical than with numeric variables.
Any string value that exceeds the defined width is truncated; so, only the first four
characters for stringVar in the third case are read. Warning messages are displayed
in the log for any strings that exceed the defined width.

Reading Complex Text Data Files

“Complex” text data files come in a variety of flavors, including:

Mixed files in which the order of variables isn’t necessarily the same for all records
and/or some record types should be skipped entirely.

Grouped files in which there are multiple records for each case that need to be
grouped together.

Nested files in which record types are related to each other hierarchically.



50

Chapter 3

Mixed Files

A mixed file is one in which the order of variables may differ for some records and/or
some records may contain entirely different variables or information that shouldn’t
be read.

Example

In this example, there are two record types that should be read: one in which state
appears before city and one in which city appears before state. There is also an
additional record type that shouldn’t be read.

*mixed_file.sps.
FILE TYPE MIXED RECORD = 1-2.
- RECORD TYPE 1.
- DATA LIST FIXED

/state 4-5 (A) city 7-17 (A) population 19-26 (F).
- RECORD TYPE 2.
- DATA LIST FIXED

/city 4-14 (A) state 16-17 (A) population 19-26 (F).
END FILE TYPE.
BEGIN DATA
01 TX Dallas 3280310
01 IL Chicago 8008507
02 Ancorage AK 257808
99 What am I doing here?
02 Casper WY 63157
01 WI Madison 428563
END DATA.

The commands that define how to read the data are all contained within the FILE
TYPE–END FILE TYPE structure.

MIXED identifies the type of data file.

RECORD = 1-2 indicates that the record type identifier appears in the first two
columns of each record.

Each DATA LIST command reads only records with the identifier value specified
on the preceding RECORD TYPE command. So, if the value in the first two
columns of the record is 1 (or 01), state comes before city, and if the value is 2,
city comes before state.

The record with the value 99 in the first two columns is not read, since there are no
corresponding RECORD TYPE and DATA LIST commands.



51

Getting Data into SPSS

You can also include a variable that contains the record identifier value by including a
variable name on the RECORD subcommand of the FILE TYPE command, as in:

FILE TYPE MIXED /RECORD = recID 1-2.

You can also specify the format for the identifier value, using the same type of format
specifications as the DATA LIST command. For example, if the value is a string
instead of a simple numeric value:

FILE TYPE MIXED /RECORD = recID 1-2 (A).

Grouped Files

In a grouped file, there are multiple records for each case that should be grouped
together based on a unique case identifier. Each case usually has one record of each
type. All records for a single case must be together in the file.

Example

In this example, there are three records for each case. Each record contains a value
that identifies the case, a value that identifies the record type, and a grade or score for
a different course.

* grouped_file.sps.
* A case is made up of all record types.
FILE TYPE GROUPED RECORD=6 CASE=student 1-4.
RECORD TYPE 1.
- DATA LIST /english 8-9 (A).
RECORD TYPE 2.
- DATA LIST /reading 8-10.
RECORD TYPE 3.
- DATA LIST /math 8-10.
END FILE TYPE.

BEGIN DATA
0001 1 B+
0001 2 74
0001 3 83
0002 1 A
0002 3 71
0002 2 100
0003 1 B-
0003 2 88
0003 3 81
0004 1 C
0004 2 94



52

Chapter 3

0004 3 91
END DATA.

The commands that define how to read the data are all contained within the FILE
TYPE–END FILE TYPE structure.

GROUPED identifies the type of data file.

RECORD=6 indicates that the record type identifier appears in column 6 of each
record.

CASE=student 1-4 indicates that the unique case identifier appears in the first
four columns and assigns that value to the variable student in the active dataset.

The three RECORD TYPE and subsequent DATA LIST commands determine how
each record is read, based on the value in column 6 of each record.

Figure 3-12
Grouped data displayed in Data Editor

Example

In order to read a grouped data file correctly, all records for the same case must be
contiguous in the source text data file. If they are not, you need to sort the data file
before reading it as a grouped data file. You can do this by reading the file as a simple
text data file, sorting it and saving it, and then reading it again as a grouped file.

*grouped_file2.sps.
* Data file is sorted by record type instead of by

identification number.
DATA LIST FIXED

/alldata 1-80 (A) caseid 1-4.



53

Getting Data into SPSS

BEGIN DATA
0001 1 B+
0002 1 A
0003 1 B-
0004 1 C
0001 2 74
0002 2 100
0003 2 88
0004 2 94
0001 3 83
0002 3 71
0003 3 81
0004 3 91
END DATA.
SORT CASES BY caseid.
WRITE OUTFILE='c:\temp\tempdata.txt'
/alldata.

EXECUTE.
* read the sorted file.
FILE TYPE GROUPED FILE='c:\temp\tempdata.txt'
RECORD=6 CASE=student 1-4.

- RECORD TYPE 1.
- DATA LIST /english 8-9 (A).
- RECORD TYPE 2.
- DATA LIST /reading 8-10.
- RECORD TYPE 3.
- DATA LIST /math 8-10.
END FILE TYPE.
EXECUTE.

The first DATA LIST command reads all of the data on each record as a single
string variable.

In addition to being part of the string variable spanning the entire record, the first
four columns are read as the variable caseid.

The data file is then sorted by caseid, and the string variable alldata, containing all
of the data on each record, is written to the text file tempdata.txt.

The sorted file, tempdata.txt, is then read as a grouped data file, just like the inline
data in the previous example.

Prior to SPSS 13.0, the maximum width of a string variable was 255 characters; so,
in earlier releases, for a file with records wider than 255 characters, you would need
to modify the job slightly to read and write multiple string variables. For example, if
the record width is 1,200:

DATA LIST FIXED
/string1 to string6 1-1200 (A) caseid 1-4.



54

Chapter 3

This would read the file as six 200-character string variables.
SPSS can now handle much longer strings in a single variable: 32,767 bytes. Thus,

this workaround is unnecessary for SPSS 13.0 or later. (If the record length exceeds
8,192 bytes, you need to use the FILE HANDLE command to specify the record length.
See the SPSS Command Syntax Reference for more information.)

Nested (Hierarchical) Files

In a nested file, the record types are related to each other hierarchically. The record
types are grouped together by a case identification number that identifies the
highest level—the first record type—of the hierarchy. Usually, the last record type
specified—the lowest level of the hierarchy—defines a case. For example, in a file
containing information on a company’s sales representatives, the records could be
grouped by sales region. Information from higher record types can be spread to each
case. For example, the sales region information can be spread to the records for each
sales representative in the region.

Example

In this example, sales data for each sales representative are nested within sales regions
(cities), and those regions are nested within years.

*nested_file1.sps.
FILE TYPE NESTED RECORD=1(A).
- RECORD TYPE 'Y'.
- DATA LIST / Year 3-6.
- RECORD TYPE 'R'.
- DATA LIST / Region 3-13 (A).
- RECORD TYPE 'P'.
- DATA LIST / SalesRep 3-13 (A) Sales 20-23.
END FILE TYPE.
BEGIN DATA
Y 2002
R Chicago
P Jones 900
P Gregory 400
R Baton Rouge
P Rodriguez 300
P Smith 333
P Grau 100
END DATA.



55

Getting Data into SPSS

Figure 3-13
Nested data displayed in Data Editor

The commands that define how to read the data are all contained within the FILE
TYPE–END FILE TYPE structure.

NESTED identifies the type of data file.

The value that identifies each record type is a string value in column 1 of each
record.

The order of the RECORD TYPE and associated DATA LIST commands defines the
nesting hierarchy, with the highest level of the hierarchy specified first. So, 'Y'
(year) is the highest level, followed by 'R' (region), and finally 'P' (person).

Eight records are read, but one of those contains year information and two identify
regions; so, the active dataset contains five cases, all with a value of 2002 for Year,
two in the Chicago Region and three in Baton Rouge.

Using INPUT PROGRAM to Read Nested Files

The previous example imposes some strict requirements on the structure of the data.
For example, the value that identifies the record type must be in the same location
on all records, and it must also be the same type of data value (in this example, a
one-character string).

Instead of using a FILE TYPE structure, we can read the same data with an INPUT

PROGRAM, which can provide more control and flexibility.



56

Chapter 3

Example

This first input program reads the same data file as the FILE TYPE NESTED example
and obtains the same results in a different manner.

* nested_input1.sps.
INPUT PROGRAM.
- DATA LIST FIXED END=#eof /#type 1 (A).
- DO IF #eof.
- END FILE.
- END IF.
- DO IF #type='Y'.
- REREAD.
- DATA LIST /Year 3-6.
- LEAVE Year.
- ELSE IF #type='R'.
- REREAD.
- DATA LIST / Region 3-13 (A).
- LEAVE Region.
- ELSE IF #type='P'.
- REREAD.
- DATA LIST / SalesRep 3-13 (A) Sales 20-23.
- END CASE.
- END IF.
END INPUT PROGRAM.
BEGIN DATA
Y 2002
R Chicago
P Jones 900
P Gregory 400
R Baton Rouge
P Rodriguez 300
P Smith 333
P Grau 100
END DATA.

The commands that define how to read the data are all contained within the INPUT
PROGRAM structure.

The first DATA LIST command reads the temporary variable #type from the first
column of each record.

END=#eof creates a temporary variable named #eof that has a value of 0 until the
end of the data file is reached, at which point the value is set to 1.

DO IF #eof evaluates as true when the value of #eof is set to 1 at the end of the
file, and an END FILE command is issued, which tells the INPUT PROGRAM to
stop reading data. In this example, this isn’t really necessary, since we’re reading



57

Getting Data into SPSS

the entire file; however, it will be used later when we want to define an end point
prior to the end of the data file.

The second DO IF–ELSE IF–END IF structure determines what to do for each
value of type.

REREAD reads the same record again, this time reading either Year, Region, or
SalesRep and Sales, depending on the value of #type.

LEAVE retains the value(s) of the specified variable(s) when reading the next
record. So, the value of Year from the first record is retained when reading Region
from the next record, and both of those values are retained when reading SalesRep
and Sales from the subsequent records in the hierarchy. So, the appropriate values
of Year and Region are spread to all of the cases at the lowest level of the hierarchy.

END CASE marks the end of each case. So, after reading a record with a #type
value of 'P', the process starts again to create the next case.

Example

In this example, the data file reflects the nested structure by indenting each nested
level; so, the values that identify record type do not appear in the same place on each
record. Furthermore, at the lowest level of the hierarchy, the record type identifier is
the last value instead of the first. Here, an INPUT PROGRAM provides the ability to
read a file that cannot be read correctly by FILE TYPE NESTED.

*nested_input2.sps.
INPUT PROGRAM.
- DATA LIST FIXED END=#eof

/#yr 1 (A) #reg 3(A) #person 25 (A).
- DO IF #eof.
- END FILE.
- END IF.
- DO IF #yr='Y'.
- REREAD.
- DATA LIST /Year 3-6.
- LEAVE Year.
- ELSE IF #reg='R'.
- REREAD.
- DATA LIST / Region 5-15 (A).
- LEAVE Region.
- ELSE IF #person='P'.
- REREAD.
- DATA LIST / SalesRep 7-17 (A) Sales 20-23.
- END CASE.
- END IF.
END INPUT PROGRAM.
BEGIN DATA



58

Chapter 3

Y 2002
R Chicago

Jones 900 P
Gregory 400 P

R Baton Rouge
Rodriguez 300 P
Smith 333 P
Grau 100 P

END DATA.

This time, the first DATA LIST command reads three temporary variables at
different locations, one for each record type.

The DO IF–ELSE IF–END IF structure then determines how to read each record
based on the values of #yr, #reg, or #person.

The remainder of the job is essentially the same as the previous example.

Example

Using the input program, we can also select a random sample of cases from each
region and/or stop reading cases at a specified maximum.

*nested_input3.sps.
INPUT PROGRAM.
COMPUTE #count=0.
- DATA LIST FIXED END=#eof

/#yr 1 (A) #reg 3(A) #person 25 (A).
- DO IF #eof OR #count = 1000.
- END FILE.
- END IF.
- DO IF #yr='Y'.
- REREAD.
- DATA LIST /Year 3-6.
- LEAVE Year.
- ELSE IF #reg='R'.
- REREAD.
- DATA LIST / Region 5-15 (A).
- LEAVE Region.
- ELSE IF #person='P' AND UNIFORM(1000) < 500.
- REREAD.
- DATA LIST / SalesRep 7-17 (A) Sales 20-23.
- END CASE.
- COMPUTE #count=#count+1.
- END IF.
END INPUT PROGRAM.
BEGIN DATA
Y 2002

R Chicago
Jones 900 P



59

Getting Data into SPSS

Gregory 400 P
R Baton Rouge

Rodriguez 300 P
Smith 333 P
Grau 100 P

END DATA.

COMPUTE #count=0 initializes a case-counter variable.

ELSE IF #person='P' AND UNIFORM(1000) < 500 will read a random
sample of approximately 50% from each region, since UNIFORM(1000) will
generate a value less than 500 approximately 50% of the time.

COMPUTE #count=#count+1 increments the case counter by 1 for each case
that is included.

DO IF #eof OR #count = 1000 will issue an END FILE command if the
case counter reaches 1,000, limiting the total number of cases in the active dataset
to no more than 1,000.

Since the source file must be sorted by year and region, limiting the total number of
cases to 1,000 (or any value) may omit some years or regions within the last year
entirely.

Repeating Data

In a repeating data file structure, multiple cases are constructed from a single record.
Information common to each case on the record may be entered once and then spread
to all of the cases constructed from the record. In this respect, a file with a repeating
data structure is like a hierarchical file, with two levels of information recorded on a
single record rather than on separate record types.

Example

In this example, we read essentially the same information as in the examples of nested
file structures, except now all of the information for each region is stored on a single
record.

*repeating_data.sps.
INPUT PROGRAM.
DATA LIST FIXED

/Year 1-4 Region 6-16 (A) #numrep 19.
REPEATING DATA STARTS=22 /OCCURS=#numrep



60

Chapter 3

/DATA=SalesRep 1-10 (A) Sales 12-14.
END INPUT PROGRAM.
BEGIN DATA
2002 Chicago 2 Jones 900Gregory 400
2002 Baton Rouge 3 Rodriguez 300Smith 333Grau 100
END DATA.

The commands that define how to read the data are all contained within the INPUT
PROGRAM structure.

The DATA LIST command defines two variables, Year and Region, that will be
spread across all of the cases read from each record. It also defines a temporary
variable, #numrep.

On the REPEATING DATA command, STARTS=22 indicates that the case starts
in column 22.

OCCURS=#numrep uses the value of the temporary variable, #numrep (defined on
the previous DATA LIST command), to determine how many cases to read from
each record. So, two cases will be read from the first record, and three will be
read from the second.

The DATA subcommand defines two variables for each case. The column locations
for those variables are relative locations. For the first case, column 22 (specified
on the STARTS subcommand) is read as column 1. For the next case, column 1 is
the first column after the end of the defined column span for the last variable in the
previous case, which would be column 36 (22+14=36).

The end result is an active dataset that looks remarkably similar to the data file created
from the hierarchical source data file.



61

Getting Data into SPSS

Figure 3-14
Repeating data displayed in Data Editor

Reading SAS Data Files

SPSS can read the following types of SAS files:

SAS long filename, versions 7 through 9

SAS short filenames, versions 7 through 9

SAS version 6 for Windows

SAS version 6 for UNIX

SAS Transport

The basic structure of a SAS data file is very similar to an SPSS data file—rows are
cases (observations), and columns are variables—and reading SAS data files requires
only a single, simple command: GET SAS.

Example

In its simplest form, the GET SAS command has a single subcommand that specifies
the SAS filename.

*get_sas.sps.
GET SAS DATA='C:\examples\data\gss.sd2'.



62

Chapter 3

SAS variable names that do not conform to SPSS variable-naming rules are
converted to valid SPSS variable names.

SAS variable labels specified on the LABEL statement in the DATA step are used as
variable labels in SPSS.

Figure 3-15
SAS data file with variable labels in SPSS

Example

SAS value formats are similar to SPSS value labels, but SAS value formats are saved
in a separate file; so, if you want to use value formats as value labels, you need to use
the FORMATS subcommand to specify the formats file.

*get_sas2.sps.
GET SAS DATA='C:\examples\data\gss.sd2'
FORMATS='c:\examples\data\GSS_Fmts.sd2'.

Labels assigned to single values are retained.

Labels assigned to a range of values are ignored.

Labels assigned to the SAS keywords LOW, HIGH, and OTHER are ignored.

Labels assigned to string variables and non-integer numeric values are ignored.



63

Getting Data into SPSS

Figure 3-16
SAS value formats used as value labels

Reading Stata Data Files

GET STATA reads Stata-format data files created by Stata versions 4 through 8. The
only specification is the FILE keyword, which specifies the Stata data file to be read.

Variable names. Stata variable names are converted to SPSS variable names
in case-sensitive form. Stata variable names that are identical except for case
are converted to valid SPSS variable names by appending an underscore and a
sequential letter (_A, _B, _C, ..., _Z, _AA, _AB, ..., etc.).

Variable labels. Stata variable labels are converted to SPSS variable labels.

Value labels. Stata value labels are converted to SPSS value labels, except for Stata
value labels assigned to “extended” missing values.

Missing values. Stata “extended” missing values are converted to system-missing.

Date conversion. Stata date format values are converted to SPSS DATE format
(d-m-y) values. Stata “time-series” date format values (weeks, months, quarters,
etc.) are converted to simple numeric (F) format, preserving the original, internal
integer value, which is the number of weeks, months, quarters, etc., since the
start of 1960.

Example

GET STATA FILE='c:\examples\data\statafile.dta'.





Chapter

4
File Operations

You can combine and manipulate data sources in a number of ways, including:

Using multiple data sources

Merging data files

Aggregating data

Weighting data

Changing file structure

Using output as input. For more information, see “Using Output as Input with
OMS” in Chapter 9 on p. 162.

Working with Multiple Data Sources

Starting with SPSS 14.0, SPSS can have multiple data sources open at the same time.

When you use the dialog boxes and wizards in the graphical user interface to read
data into SPSS, the default behavior is to open each data source in a new Data
Editor window, and any previously open data sources remain open and available
for further use. You can change the active dataset simply by clicking anywhere in
the Data Editor window of the data source that you want to use or by selecting the
Data Editor window for that data source from the Window menu.

In command syntax, the default behavior remains the same as in previous releases:
reading a new data source automatically replaces the active dataset. If you want to
work with multiple datasets using command syntax, you need to use the DATASET
commands.

65



66

Chapter 4

The DATASET commands (DATASET NAME, DATASET ACTIVATE, DATASET
DECLARE, DATASET COPY, DATASET CLOSE) provide the ability to have multiple
data sources open at the same time and control which open data source is active at any
point in the session. Using defined dataset names, you can then:

Merge data (for example, MATCH FILES, ADD FILES, UPDATE) from multiple
different source types (for example, text data, database, spreadsheet) without
saving each one as an SPSS data file first.

Create new datasets that are subsets of open data sources (for example, males in
one subset, females in another, people under a certain age in another; or original
data in one set and transformed/computed values in another subset).

Copy and paste variables, cases, and/or variable properties between two or more
open data sources in the Data Editor.

Operations

SPSS commands operate on the active dataset. The active dataset is the data
source most recently opened (for example, by commands such as GET DATA, GET
SAS, GET STATA, GET TRANSLATE) or most recently activated by a DATASET
ACTIVATE command.

Variables from one dataset are not available when another dataset is the active
dataset.

Transformations to the active dataset—before or after defining a dataset
name—are preserved with the named dataset during the session, and any pending
transformations to the active dataset are automatically executed whenever a
different data source becomes the active dataset.

Dataset names can be used in most commands that can contain a reference to
an SPSS data file.

Wherever a dataset name, file handle (defined by the FILE HANDLE command),
or filename can be used to refer to an SPSS data file, defined dataset names take
precedence over file handles, which take precedence over filenames. For example,
if file1 exists as both a dataset name and a file handle, FILE=file1 in the MATCH
FILES command will be interpreted as referring to the dataset named file1, not
the file handle.

Example

*multiple_datasets.sps.



67

File Operations

DATA LIST FREE /file1Var.
BEGIN DATA
11 12 13
END DATA.
DATASET NAME file1.
COMPUTE file1Var=MOD(file1Var,10).
DATA LIST FREE /file2Var.
BEGIN DATA
21 22 23
END DATA.
DATASET NAME file2.
*file2 is now the active dataset; so the following
command will generate an error.

FREQUENCIES VARIABLES=file1Var.
*now activate dataset file1 and rerun Frequencies.
DATASET ACTIVATE file1.
FREQUENCIES VARIABLES=file1Var.

The first DATASET NAME command assigns a name to the active dataset (the data
defined by the first DATA LIST command). This keeps the dataset open for
subsequent use in the session after other data sources have been opened. Without
this command, the dataset would automatically close when the next command
that reads/opens a data source is run.

The COMPUTE command applies a transformation to a variable in the active
dataset. This transformation will be preserved with the dataset named file1. The
order of the DATASET NAME and COMPUTE commands is not important. Any
transformations to the active dataset, before or after assigning a dataset name, are
preserved with that dataset during the session.

The second DATA LIST command creates a new dataset, which automatically
becomes the active dataset. The subsequent FREQUENCIES command that specifies
a variable in the first dataset will generate an error, because file1 is no longer the
active dataset, and there is no variable named file1Var in the active dataset.

DATASET ACTIVATE makes file1 the active dataset again, and now the
FREQUENCIES command will work.

Example

*dataset_subsets.sps.
DATASET CLOSE ALL.
DATA LIST FREE /gender.
BEGIN DATA
0 0 1 1 0 1 1 1 0 0
END DATA.
DATASET NAME original.



68

Chapter 4

DATASET COPY males.
DATASET ACTIVATE males.
SELECT IF gender=0.
DATASET ACTIVATE original.
DATASET COPY females.
DATASET ACTIVATE females.
SELECT IF gender=1.
EXECUTE.

The first DATASET COPY command creates a new dataset, males, that represents
the state of the active dataset at the time it was copied.

The males dataset is activated and a subset of males is created.

The original dataset is activated, restoring the cases deleted from the males subset.

The second DATASET COPY command creates a second copy of the original dataset
with the name females, which is then activated and a subset of females is created.

Three different versions of the initial data file are now available in the session: the
original version, a version containing only data for males, and a version containing
only data for females.

Figure 4-1
Multiple subsets available in the same session



69

File Operations

Merging Data Files
You can merge two or more datasets in several ways:

Merge datasets with the same cases but different variables.

Merge datasets with the same variables but different cases.

Update values in a master data file with values from a transaction file.

Merging Files with the Same Cases but Different Variables

The MATCH FILES command merges two or more data files that contain the same
cases but different variables. For example, demographic data for survey respondents
might be contained in one data file, and survey responses for surveys taken at different
times might be contained in multiple additional data files. The cases are the same
(respondents), but the variables are different (demographic information and survey
responses).

This type of data file merge is similar to joining multiple database tables except that
you are merging multiple SPSS-format data files rather than database tables. For
information on reading multiple database tables with joins, see “Reading Multiple
Tables” in Chapter 3 on p. 27.

One-to-One Matches

The simplest type of match assumes that there is basically a one-to-one relationship
between cases in the files being merged—for each case in one file, there is a
corresponding case in the other file.

Example

This example merges a data file containing demographic data with another file
containing survey responses for the same cases.

*match_files1.sps.
*first make sure files are sorted correctly.
GET FILE='C:\examples\data\match_response1.sav'.
SORT CASES BY id.
DATASET NAME responses.
GET FILE='C:\examples\data\match_demographics.sav'.
SORT CASES BY id.
*now merge the survey responses with the demographic info.
MATCH FILES /FILE=*



70

Chapter 4

/FILE=responses
/BY id.

EXECUTE.

DATASET NAME is used to name the first dataset, so it will remain available after
the second dataset is opened.

SORT CASES BY id is used to sort both datasets in the same case order. Cases
are merged sequentially, so both datasets must be sorted in the same order to make
sure that cases are merged correctly.

MATCH FILES merges the two datasets. FILE=* indicates the active dataset (the
demographic dataset).

The BY subcommand matches cases by the value of the ID variable in both datasets.
In this example, this is not technically necessary, since there is a one-to-one
correspondence between cases in the two datasets and the datasets are sorted in
the same case order. However, if the datasets are not sorted in the same order and
no key variable is specified on the BY subcommand, the datasets will be merged
incorrectly with no warnings or error messages; whereas, if a key variable is
specified on the BY subcommand and the datasets are not sorted in the same order
of the key variable, the merge will fail and an appropriate error message will be
displayed. If the datasets contain a common case identifier variable, it is a good
practice to use the BY subcommand.

Any variables with the same name are assumed to contain the same information,
and only the variable from the first dataset specified on the MATCH FILES
command is included in the merged dataset. In this example, the ID variable (id) is
present in both datasets, and the merged dataset contains the values of the variable
from the demographic dataset — which is the first dataset specified on the MATCH
FILES command. (In this case, the values are identical anyway.)

For string variables, variables with the same name must have the same defined
width in both files. If they have different defined widths, an error results and the
command does not run. This includes string variables used as BY variables.



71

File Operations

Example

Expanding the previous example, we will merge the same two data files plus a third
data file that contains survey responses from a later date. Three aspects of this third file
warrant special attention:

The variable names for the survey questions are the same as the variable names
in the survey response data file from the earlier date.

One of the cases that is present in both the demographic data file and the first
survey response file is missing from the new survey response data file.

The source file is not an SPSS-format data file; it’s an Excel worksheet.

*match_files2.sps.
GET FILE='C:\examples\data\match_response1.sav'.
SORT CASES BY id.
DATASET NAME response1.
GET DATA /TYPE=XLS

/FILE='c:\examples\data\match_response2.xls'.
SORT CASES BY id.
DATASET NAME response2.
GET FILE='C:\examples\data\match_demographics.sav'.
SORT CASES BY id.
MATCH FILES /FILE=*

/FILE=response1
/FILE=response2
/RENAME opinion1=opinion1_2 opinion2=opinion2_2
opinion3=opinion3_2 opinion4=opinion4_2

/BY id.
EXECUTE.

As before, all of the datasets are sorted by the values of the ID variable.

MATCH FILES specifies three datasets this time: the active dataset that contains
the demographic information and the two datasets containing survey responses
from two different dates.

The RENAME command after the FILE subcommand for the second survey response
dataset provides new names for the survey response variables in that dataset. This
is necessary to include these variables in the merged dataset. Otherwise, they
would be excluded because the original variable names are the same as the variable
names in the first survey response dataset.



72

Chapter 4

The BY subcommand is necessary in this example because one case (id = 184)
is missing from the second survey response dataset, and without using the BY
variable to match cases, the datasets would be merged incorrectly.

All cases are included in the merged dataset. The case missing from the second
survey response dataset is assigned the system-missing value for the variables
from that dataset (opinion1_2–opinion4_2).

Figure 4-2
Merged files displayed in Data Editor

Table Lookup (One-to-Many) Matches

A table lookup file is a file in which data for each “case” can be applied to multiple
cases in the other data file(s). For example, if one file contains information on
individual family members (such as gender, age, education) and the other file contains
overall family information (such as total income, family size, location), you can use
the file of family data as a table lookup file and apply the common family data to each
individual family member in the merged data file.

Specifying a file with the TABLE subcommand instead of the FILE subcommand
indicates that the file is a table lookup file. The following example merges two text
files, but they could be any combination of data sources that you can read into SPSS.
For information on reading different types of data into SPSS, see Chapter 3 on p. 23.

*match_table_lookup.sps.
DATA LIST LIST



73

File Operations

FILE='c:\examples\data\family_data.txt'
/household_id total_income family_size region.

SORT CASES BY household_id.
DATASET NAME household.
DATA LIST LIST

FILE='c:\examples\data\individual_data.txt'
/household_id indv_id age gender education.

SORT CASE BY household_id.
DATASET NAME individual.
MATCH FILES TABLE='household'

/FILE='individual'
/BY household_id.

EXECUTE.

Merging Files with the Same Variables but Different Cases

The ADD FILES command merges two or more data files that contain the same
variables but different cases. For example, regional revenue for two different company
divisions might be stored in two separate data files. Both files have the same variables
(region indicator and revenue) but different cases (each region for each division is a
case).

Example

ADD FILES relies on variable names to determine which variables represent the
“same” variables in the data files being merged. In the simplest example, all of the files
contain the same set of variables, using the exact same variable names, and all you
need to do is specify the files to be merged. In this example, the two files both contain
the same two variables, with the same two variable names: Region and Revenue.

*add_files1.sps.
ADD FILES

/FILE = 'c:\examples\data\catalog.sav'
/FILE =' c:\examples\data\retail.sav'

/IN = Division.
EXECUTE.
VALUE LABELS Division 0 'Catalog' 1 'Retail Store'.



74

Chapter 4

Figure 4-3
Cases from one file added to another file

Cases are added to the active dataset in the order in which the source data files are
specified on the ADD FILES command; all of the cases from catalog.sav appear
first, followed by all of the cases from retail.sav.

The IN subcommand after the FILE subcommand for retail.sav creates a new
variable named Division in the merged dataset, with a value of 1 for cases that
come from retail.sav and a value of 0 for cases that come from catalog.sav. (If
the IN subcommand was placed immediately after the FILE subcommand for
catalog.sav, the values would be reversed.)

The VALUE LABELS command provides descriptive labels for the Division values
of 0 and 1, identifying the division for each case in the merged dataset.

Example

Now that we’ve had a good laugh over the likelihood that all of the files have the
exact same structure with the exact same variable names, let’s look at a more realistic
example. What if the revenue variable had a different name in one of the files and one
of the files contained additional variables not present in the other files being merged?

*add_files2.sps.
***first throw some curves into the data***.
GET FILE = 'c:\examples\data\catalog.sav'.
RENAME VARIABLES (Revenue=Sales).
DATASET NAME catalog.



75

File Operations

GET FILE = 'c:\examples\data\retail.sav'.
COMPUTE ExtraVar = 9.
EXECUTE.
DATASET NAME retail.
***show default behavior***.
ADD FILES

/FILE = 'catalog'
/FILE = 'retail'

/IN = Division.
EXECUTE.
***now treat Sales and Revenue as same variable***.
***and drop ExtraVar from the merged file***.
ADD FILES

/FILE = 'catalog'
/RENAME (Sales = Revenue)

/FILE = 'retail'
/IN = Division
/DROP ExtraVar

/BY Region.
EXECUTE.

All of the commands prior to the first ADD FILES command simply modify the
original data files to contain minor variations—Revenue is changed to Sales in one
data file, and an extra variable, ExtraVar, is added to the other data file.

The first ADD FILES command is similar to the one in the previous example
and shows the default behavior if non-matching variable names and extraneous
variables are not accounted for—the merged dataset has five variables instead
of three, and it also has a lot of missing data. Sales and Revenue are treated as
different variables, resulting in half of the cases having values for Sales and half of
the cases having values for Revenue—and cases from the second data file have
values for ExtraVar, but cases from the first data file do not, since this variable
does not exist in that file.



76

Chapter 4

Figure 4-4
Probably not what you want when you add cases from another file

In the second ADD FILES command, the RENAME subcommand after the FILE
subcommand for catalog will treat the variable Sales as if its name were Revenue,
so the variable name will match the corresponding variable in retail.

The DROP subcommand following the FILE subcommand for temp2.sav (and
the associated IN subcommand) will exclude ExtraVar from the merged dataset.
(The DROP subcommand must come after the FILE subcommand for the file that
contains the variables to be excluded.)

The BY subcommand adds cases to the merged data file in ascending order of
values of the variable Region instead of adding cases in file order—but this
requires that both files already be sorted in the same order of the BY variable.



77

File Operations

Figure 4-5
Cases added in order of Region variable instead of file order

Updating Data Files by Merging New Values from Transaction Files

You can use the UPDATE command to replace values in a master file with updated
values recorded in one or more files called transaction files.

*update.sps.
GET FILE = 'c:\examples\data\update_transaction.sav'.
SORT CASE BY id.
DATASET NAME transaction.
GET FILE = 'c:\examples\data\update_master.sav'.
SORT CASES BY id.
UPDATE /FILE = *

/FILE = transaction
/IN = updated

/BY id.
EXECUTE.

SORT CASES BY id is used to sort both files in the same case order. Cases are
updated sequentially, so both files must be sorted in the same order.

The first FILE subcommand on the UPDATE command specifies the master data
file. In this example, FILE = * specifies the active dataset.

The second FILE subcommand specifies the dataset name assigned to the
transaction file.



78

Chapter 4

The IN subcommand immediately following the second FILE subcommand
creates a new variable called updated in the master data file; this variable will
have a value of 1 for any cases with updated values and a value of 0 for cases
that have not changed.

The BY subcommand matches cases by id. This subcommand is required.
Transaction files often contain only a subset of cases, and a key variable is
necessary to match cases in the two files.

Figure 4-6
Original file, transaction file, and update file

The salary values for the cases with the id values of 103 and 201 are both updated.

The department value for case 201 is updated, but the department value for case
103 is not updated. System-missing values in the transaction files do not overwrite
existing values in the master file, so the transactions files can contain partial
information for each case.



79

File Operations

Aggregating Data

The AGGREGATE command creates a new dataset where each case represents one or
more cases from the original dataset. You can save the aggregated data to a new dataset
or replace the active dataset with aggregated data. You can also append the aggregated
results as new variables to the current active dataset.

Example

In this example, information was collected for every person living in a selected sample
of households. In addition to information for each individual, each case contains
a variable that identifies the household. You can change the unit of analysis from
individuals to households by aggregating the data based on the value of the household
ID variable.

*aggregate1.sps.
***create some sample data***.
DATA LIST FREE (" ")

/ID_household (F3) ID_person (F2) Income (F8).
BEGIN DATA
101 1 12345 101 2 47321 101 3 500 101 4 0
102 1 77233 102 2 0
103 1 19010 103 2 98277 103 3 0
104 1 101244
END DATA.
***now aggregate based on household id***.
AGGREGATE

/OUTFILE = * MODE = REPLACE
/BREAK = ID_household
/Household_Income = SUM(Income)
/Household_Size = N.

OUTFILE = * MODE = REPLACE replaces the active dataset with the aggregated
data.

BREAK = ID_household combines cases based on the value of the household
ID variable.

Household_Income = SUM(Income) creates a new variable in the aggregated
dataset that is the total income for each household.

Household_Size = N creates a new variable in the aggregated dataset that is
the number of original cases in each aggregated case.



80

Chapter 4

Figure 4-7
Original and aggregated data

Example

You can also use MODE = ADDVARIABLES to add group summary information to the
original data file. For example, you could create two new variables in the original data
file that contain the number of people in the household and the per capita income for
the household (total income divided by number of people in the household).

*aggregate2.sps.
DATA LIST FREE (" ")

/ID_household (F3) ID_person (F2) Income (F8).
BEGIN DATA
101 1 12345 101 2 47321 101 3 500 101 4 0
102 1 77233 102 2 0
103 1 19010 103 2 98277 103 3 0
104 1 101244
END DATA.
AGGREGATE

/OUTFILE = * MODE = ADDVARIABLES
/BREAK = ID_household
/per_capita_Income = MEAN(Income)
/Household_Size = N.

As with the previous example, OUTFILE = * specifies the active dataset as the
target for the aggregated results.



81

File Operations

Instead of replacing the original data with aggregated data, MODE =
ADDVARIABLES will add aggregated results as new variables to the active dataset.

As with the previous example, cases will be aggregated based on the household
ID value.

The MEAN function will calculate the per capita household incomes.

Figure 4-8
Aggregate summary data added to original data

Aggregate Summary Functions

The new variables created when you aggregate a data file can be based on a wide
variety of numeric and statistical functions applied to each group of cases defined by
the BREAK variables, including:

Number of cases in each group

Sum, mean, median, and standard deviation

Minimum, maximum, and range

Percentage of cases between, above, and/or below specified values

First and last non-missing value in each group

Number of missing values in each group



82

Chapter 4

For a complete list of aggregate functions, see the AGGREGATE command in the SPSS
Command Syntax Reference.

Weighting Data
The WEIGHT command simulates case replication by treating each case as if it were
actually the number of cases indicated by the value of the weight variable. You can use
a weight variable to adjust the distribution of cases to more accurately reflect the larger
population or to simulate raw data from aggregated data.

Example

A sample data file contains 52% males and 48% females, but you know that in the
larger population the real distribution is 49% males and 51% females. You can
compute and apply a weight variable to simulate this distribution.

*weight_sample.sps.
***create sample data of 52 males, 48 females***.
NEW FILE.
INPUT PROGRAM.
- STRING gender (A6).
- LOOP #I =1 TO 100.
- DO IF #I <= 52.
- COMPUTE gender='Male'.
- ELSE.
- COMPUTE Gender='Female'.
- END IF.
- COMPUTE AgeCategory = trunc(uniform(3)+1).
- END CASE.
- END LOOP.
- END FILE.
END INPUT PROGRAM.
FREQUENCIES VARIABLES=gender AgeCategory.
***create and apply weightvar***.
***to simulate 49 males, 51 females***.
DO IF gender = 'Male'.
- COMPUTE weightvar=49/52.
ELSE IF gender = 'Female'.
- COMPUTE weightvar=51/48.
END IF.
WEIGHT BY weightvar.
FREQUENCIES VARIABLES=gender AgeCategory.

Everything prior to the first FREQUENCIES command simply generates a sample
dataset with 52 males and 48 females.



83

File Operations

The DO IF structure sets one value of weightvar for males and a different value for
females. The formula used here is: desired proportion/observed proportion. For
males, it is 49/52 (0.94), and for females, it is 51/48 (1.06).

The WEIGHT command weights cases by the value of weightvar, and the second
FREQUENCIES command displays the weighted distribution.

Note: In this example, the weight values have been calculated in a manner that does
not alter the total number of cases. If the weighted number of cases exceeds the
original number of cases, tests of significance are inflated; if it is smaller, they are
deflated. More flexible and reliable weighting techniques are available in the Complex
Samples add-on module.

Example

You want to calculate measures of association and/or significance tests for a
crosstabulation, but all you have to work with is the summary table, not the raw data
used to construct the table. The table looks like this:

Male Female Total

Under $50K 25 35 60

$50K+ 30 10 40

Total 55 45 100

You then read the data into SPSS, using rows, columns, and cell counts as variables;
then, use the cell count variable as a weight variable.

*weight.sps.
DATA LIST LIST /Income Gender count.
BEGIN DATA
1, 1, 25
1, 2, 35
2, 1, 30
2, 2, 10
END DATA.
VALUE LABELS

Income 1 'Under $50K' 2 '$50K+'
/Gender 1 'Male' 2 'Female'.

WEIGHT BY count.
CROSSTABS TABLES=Income by Gender

/STATISTICS=CC PHI.



84

Chapter 4

The values for Income and Gender represent the row and column positions from
the original table, and count is the value that appears in the corresponding cell in
the table. For example, 1, 2, 35 indicates that the value in the first row, second
column is 35. (The Total row and column are not included.)

The VALUE LABELS command assigns descriptive labels to the numeric codes for
Income and Gender. In this example, the value labels are the row and column
labels from the original table.

The WEIGHT command weights cases by the value of count, which is the number
of cases in each cell of the original table.

The CROSSTABS command produces a table very similar to the original and
provides statistical tests of association and significance.

Figure 4-9
Crosstabulation and significance tests for reconstructed table

Changing File Structure

SPSS expects data to be organized in a certain way, and different types of analysis
may require different data structures. Since your original data can come from many
different sources, the data may require some reorganization before you can create the
reports or analyses that you want.



85

File Operations

Transposing Cases and Variables

You can use the FLIP command to create a new data file in which the rows and
columns in the original data file are transposed so that cases (rows) become variables
and variables (columns) become cases.

Example

Although SPSS expects cases in the rows and variables in the columns, applications
such as Excel don’t have that kind of data structure limitation. So what do you do with
an Excel file in which cases are recorded in the columns and variables are recorded in
the rows?

Figure 4-10
Excel file with cases in columns, variables in rows

Here are the commands to read the Excel spreadsheet and transpose the rows and
columns:

*flip_excel.sps.
GET DATA /TYPE=XLS

/FILE='C:\examples\data\flip_excel.xls'
/READNAMES=ON .

FLIP VARIABLES=Newton Boris Kendall Dakota Jasper Maggie
/NEWNAME=V1.

RENAME VARIABLES (CASE_LBL = Name).

READNAMES=ON in the GET DATA command reads the first row of the Excel
spreadsheet as variable names. Since the first cell in the first row is blank, it is
assigned a default variable name of V1.



86

Chapter 4

The FLIP command creates a new active dataset in which all of the variables
specified will become cases and all cases in the file will become variables.

The original variable names are automatically stored as values in a new variable
called CASE_LBL. The subsequent RENAME VARIABLES command changes the
name of this variable to Name.

NEWNAME=V1 uses the values of variable V1 as variable names in the transposed
data file.

Figure 4-11
Original and transposed data in Data Editor

Cases to Variables

Sometimes you may need to restructure your data in a slightly more complex manner
than simply flipping rows and columns.



87

File Operations

Many statistical techniques in SPSS are based on the assumption that cases (rows)
represent independent observations and/or that related observations are recorded in
separate variables rather than separate cases. If a data file contains groups of related
cases, you may not be able to use the appropriate statistical techniques (for example,
the Paired Samples T Test or Repeated Measures GLM) because the data are not
organized in the required fashion for those techniques.

In this example, we use a data file that is very similar to the data used in the
AGGREGATE example. For more information, see “Aggregating Data” on p. 79.
Information was collected for every person living in a selected sample of households.
In addition to information for each individual, each case contains a variable that
identifies the household. Cases in the same household represent related observations,
not independent observations, and we want to restructure the data file so that each
group of related cases is one case in the restructured file and new variables are created
to contain the related observations.

Figure 4-12
Data file before restructuring cases to variables

The CASESTOVARS command combines the related cases and produces the new
variables.

*casestovars.sps.
GET FILE = 'c:\examples\data\casestovars.sav'.
SORT CASES BY ID_household.
CASESTOVARS



88

Chapter 4

/ID = ID_household
/INDEX = ID_person
/SEPARATOR = "_"
/COUNT = famsize.

VARIABLE LABELS
Income_1 "Husband/Father Income"
Income_2 "Wife/Mother Income"
Income_3 "Other Income".

SORT CASES sorts the data file by the variable that will be used to group cases
in the CASESTOVARS command. The data file must be sorted by the variable(s)
specified on the ID subcommand of the CASESTOVARS command.

The ID subcommand of the CASESTOVARS command indicates the variable(s) that
will be used to group cases together. In this example, all cases with the same value
for ID_household will become a single case in the restructured file.

The optional INDEX subcommand identifies the original variables that will be used
to create new variables in the restructured file. Without the INDEX subcommand,
all unique values of all non-ID variables will generate variables in the restructured
file. In this example, only values of ID_person will be used to generate new
variables. Index variables can be either string or numeric. Numeric index values
must be non-missing, positive integers; string index values cannot be blank.

The SEPARATOR subcommand specifies the character(s) that will be used to
separate original variable names and the values appended to those names for the
new variable names in the restructured file. By default, a period is used. You can
use any characters that are allowed in a valid variable name (which means the
character cannot be a space). If you do not want any separator, specify a null string
(SEPARATOR = "").

The COUNT subcommand will create a new variable that indicates the number of
original cases represented by each combined case in the restructured file.

The VARIABLE LABELS command provides descriptive labels for the new
variables in the restructured file.



89

File Operations

Figure 4-13
Data file after restructuring cases to variables

Variables to Cases

The previous example turned related cases into related variables for use with statistical
techniques that compare and contrast related samples. But sometimes you may need
to do the exact opposite—convert variables that represent unrelated observations to
variables.

Example

A simple Excel file contains two columns of information: income for males and
income for females. There is no known or assumed relationship between male
and female values that are recorded in the same row; the two columns represent
independent (unrelated) observations, and we want to create cases (rows) from the
columns (variables) and create a new variable that indicates the gender for each case.



90

Chapter 4

Figure 4-14
Data file before restructuring variables to cases

The VARSTOCASES command creates cases from the two columns of data.

*varstocases1.sps.
GET DATA /TYPE=XLS
/FILE = 'c:\examples\data\varstocases.xls'
/READNAMES = ON.

VARSTOCASES
/MAKE Income FROM Male_Income Female_Income
/INDEX = Gender.

VALUE LABELS Gender 1 'Male' 2 'Female'.

The MAKE subcommand creates a single income variable from the two original
income variables.

The INDEX subcommand creates a new variable named Gender with integer values
that represent the sequential order in which the original variables are specified on
the MAKE subcommand. A value of 1 indicates that the new case came from the
original male income column, and a value of 2 indicates that the new case came
from the original female income column.

The VALUE LABELS command provides descriptive labels for the two values
of the new Gender variable.



91

File Operations

Figure 4-15
Data file after restructuring variables to cases

Example

In this example, the original data contain separate variables for two measures taken at
three separate times for each case. This is the correct data structure for most procedures
that compare related observations—but there is one important exception: Linear Mixed
Models (available in the Advanced Statistics add-on module) requires a data structure
in which related observations are recorded as separate cases.



92

Chapter 4

Figure 4-16
Related observations recorded as separate variables

*varstocases2.sps.
GET FILE = 'c:\examples\data\varstocases.sav'.
VARSTOCASES /MAKE V1 FROM V1_Time1 V1_Time2 V1_Time3
/MAKE V2 FROM V2_Time1 V2_Time2 V2_Time3
/INDEX = Time
/KEEP = ID Age.

The two MAKE subcommands create two variables, one for each group of three
related variables.

The INDEX subcommand creates a variable named Time that indicates the
sequential order of the original variables used to create the cases, as specified on
the MAKE subcommand.

The KEEP subcommand retains the original variables ID and Age.



93

File Operations

Figure 4-17
Related variables restructured into cases





Chapter

5
Variable and File Properties

In addition to the basic data type (numeric, string, date, etc.), you can assign other
properties that describe the variables and their associated values. You can also
define properties that apply to the entire data file. In a sense, these properties can be
considered metadata—data that describe the data. These properties are automatically
saved with the data when you save the data as an SPSS-format data file.

Variable Properties
You can use variable attributes to provide descriptive information about data and
control how data are treated in analysis, charts, and reports.

Variable labels and value labels provide descriptive information that make it easier
to understand your data and results.

Missing value definitions and measurement level affect how variables and specific
data values are treated by statistical and charting procedures.

Example

*define_variables.sps.
DATA LIST LIST

/id (F3) Interview_date (ADATE10) Age (F3) Gender (A1)
Income_category (F1) Religion (F1) opinion1 to opinion4 (4F1).

BEGIN DATA
150 11/1/2002 55 m 3 4 5 1 3 1
272 10/24/02 25 f 3 9 2 3 4 3
299 10-24-02 900 f 8 4 2 9 3 4
227 10/29/2002 62 m 9 4 2 3 5 3
216 10/26/2002 39 F 7 3 9 3 2 1
228 10/30/2002 24 f 4 2 3 5 1 5
333 10/29/2002 30 m 2 3 5 1 2 3
385 10/24/2002 23 m 4 4 3 3 9 2
170 10/21/2002 29 f 4 2 2 2 2 5
391 10/21/2002 58 m 1 3 5 1 5 3
END DATA.

95



96

Chapter 5

FREQUENCIES VARIABLES=opinion3 Income_Category.
VARIABLE LABELS

Interview_date "Interview date"
Income_category "Income category"
opinion1 "Would buy this product"
opinion2 "Would recommend this product to others"
opinion3 "Price is reasonable"
opinion4 "Better than a poke in the eye with a sharp stick".

VALUE LABELS
Gender "m" "Male" "f" "Female"
/Income_category 1 "Under 25K" 2 "25K to 49K" 3 "50K to 74K" 4 "75K+"
7 "Refused to answer" 8 "Don't know" 9 "No answer"
/Religion 1 "Catholic" 2 "Protestant" 3 "Jewish" 4 "Other" 9 "No answer"
/opinion1 TO opinion4 1 "Strongly Disagree" 2 "Disagree" 3 "Ambivalent"
4 "Agree" 5 "Strongly Agree" 9 "No answer".

MISSING VALUES
Income_category (7, 8, 9)
Religion opinion1 TO opinion4 (9).

VARIABLE LEVEL
Income_category, opinion1 to opinion4 (ORDINAL)
Religion (NOMINAL).

FREQUENCIES VARIABLES=opinion3 Income_Category.

Figure 5-1
Frequency tables before assigning variable properties



97

Variable and File Properties

The first FREQUENCIES command, run before any variable properties are assigned,
produces the preceding frequency tables.

For both variables in the two tables, the actual numeric values do not mean a
great deal by themselves, since the numbers are really just codes that represent
categorical information.

For opinion3, the variable name itself does not convey any particularly useful
information either.

The fact that the reported values for opinion3 go from 1 to 5 and then jump to 9
may mean something, but you really cannot tell what.

Figure 5-2
Frequency tables after assigning variable properties

The second FREQUENCIES command is exactly the same as the first, except this
time it is run after a number of properties have been assigned to the variables.

By default, any defined variable labels and value labels are displayed in output
instead of variable names and data values. You can also choose to display variable
names and/or data values or to display both names/values and variable and value



98

Chapter 5

labels. (See the SET command and the TVARS and TNUMBERS subcommands in
the SPSS Command Syntax Reference.)

User-defined missing values are flagged for special handling. Many procedures
and computations automatically exclude user-defined missing values. In this
example, missing values are displayed separately and are not included in the
computation of Valid Percent or Cumulative Percent.

If you save the data as an SPSS-format data file, variable labels, value labels,
missing values, and other variable properties are automatically saved with the
data file. You do not need to reassign variable properties every time you open
the data file.

Variable Labels

The VARIABLE LABELS command provides descriptive labels up to 255 bytes long.
Variable names can be up to 64 bytes long, but variable names cannot contain spaces
and cannot contain certain characters. For more information, see “Variables” in the
“Universals” section of the SPSS Command Syntax Reference.

VARIABLE LABELS
Interview_date "Interview date"
Income_category "Income category"
opinion1 "Would buy this product"
opinion2 "Would recommend this product to others"
opinion3 "Price is reasonable"
opinion4 "Better than a poke in the eye with a sharp stick".

The variable labels Interview date and Income category do not provide any
additional information, but their appearance in the output is better than the variable
names with underscores where spaces would normally be.

For the four opinion variables, the descriptive variable labels are more informative
than the generic variable names.

Value Labels

You can use the VALUE LABELS command to assign descriptive labels for each
value of a variable. This is particularly useful if your data file uses numeric codes to
represent non-numeric categories. For example, income_category uses the codes 1



99

Variable and File Properties

through 4 to represent different income ranges, and the four opinion variables use the
codes 1 through 5 to represent level of agreement/disagreement.

VALUE LABELS
Gender "m" "Male" "f" "Female"
/Income_category 1 "Under 25K" 2 "25K to 49K" 3 "50K to 74K" 4 "75K+"
7 "Refused to answer" 8 "Don't know" 9 "No answer"
/Religion 1 "Catholic" 2 "Protestant" 3 "Jewish" 4 "Other" 9 "No answer"
/opinion1 TO opinion4 1 "Strongly Disagree" 2 "Disagree" 3 "Ambivalent"
4 "Agree" 5 "Strongly Agree" 9 "No answer".

Value labels can be up to 120 bytes long.

For string variables, both the values and the labels need to be enclosed in quotes.
Also, remember that string values are case sensitive; "f" "Female" is not the
same as "F" "Female".

You cannot assign value labels to long string variables (string variables longer
than eight characters).

Use ADD VALUE LABELS to define additional value labels without deleting
existing value labels.

Missing Values

The MISSING VALUES command identifies specified data values as user missing.
It is often useful to know why information is missing. For example, you might want
to distinguish between data that is missing because a respondent refused to answer
and data that is missing because the question did not apply to that respondent. Data
values specified as user missing are flagged for special treatment and are excluded
from most calculations.

MISSING VALUES
Income_category (7, 8, 9)
Religion opinion1 TO opinion4 (9).

You can assign up to three discrete (individual) missing values, a range of missing
values, or a range plus one discrete value.

Ranges can be specified only for numeric variables.

You cannot assign missing values to long string variables (string variables longer
than eight characters).



100

Chapter 5

Measurement Level

You can assign measurement levels (nominal, ordinal, scale) to variables with the
VARIABLE LEVEL command.

VARIABLE LEVEL
Income_category, opinion1 to opinion4 (ORDINAL)
Religion (NOMINAL).

By default, all new string variables are assigned a nominal measurement level, and
all new numeric variables are assigned a scale measurement level. In our example,
there is no need to explicitly specify a measurement level for Interview_date or
Gender, since they already have the appropriate measurement levels (scale and
nominal, respectively).

The numeric opinion variables are assigned the ordinal measurement level because
there is a meaningful order to the categories.

The numeric variable Religion is assigned the nominal measurement level because
there is no meaningful order of religious affiliation. No religion is “higher” or
“lower” than another religion.

For many commands, the defined measurement level has no effect on the results. For a
few commands, however, the defined measurement level can make a difference in the
results and/or available options. These command include: GGRAPH, IGRAPH, XGRAPH,
CTABLES (Tables option), and TREE (Classification Trees option).

Custom Variable Properties

You can use the VARIABLE ATTRIBUTE command to create and assign custom
variable attributes.

Example

VARIABLE ATTRIBUTE VARIABLES=Age Gender Region
ATTRIBUTE=DemographicVars ('1').

VARIABLE ATTRIBUTE VARIABLES=Age
DELETE=DemographicVars.

VARIABLE ATTRIBUTE VARIABLES=Gender
ATTRIBUTE=Binary("Yes").

DISPLAY ATTRIBUTES.



101

Variable and File Properties

The first VARIABLE ATTRIBUTE command creates an attribute DemographicVars
and assigns a value of 1 to that attribute for the variables Age, Gender, and Region.

The second VARIABLE ATTRIBUTE command deletes the attribute
DemographicVars for the variable Age; the attribute is unaffected for the other
two variables.

The last VARIABLE ATTRIBUTE command creates a second attribute, Binary,
with a value of “Yes” for the variable Gender.

The DISPLAY command lists the resulting user-defined variable attributes.

Figure 5-3
User-defined variable attributes

Attribute Arrays

If you append an integer enclosed in square brackets to the end of an attribute name,
the attribute is interpreted as an array of attributes. For example:

VARIABLE ATTRIBUTE VARIABLES=Age
ATTRIBUTE=MyAttribute[99]('not quite 100').

will create 99 attributes—MyAttribute[01] through MyAttribute[99] — and will assign
the value “not quite 100” to the last one.

Example

VARIABLE ATTRIBUTE VARIABLES=Age
ATTRIBUTE=MyAttribute[5]('5')

MyAttribute[3]('3').
DISPLAY ATTRIBUTES.

VARIABLE ATTRIBUTE VARIABLES=Age
DELETE=MyAttribute[2].

DISPLAY ATTRIBUTES.



102

Chapter 5

VARIABLE ATTRIBUTE VARIABLES=Age
DELETE=MyAttribute.

The first VARIABLE ATTRIBUTE command creates five attributes. Even though
only two are explicitly listed in the command, the highest array value (5 in this
example) determines the total number of attributes.

As indicated in the table produced by the DISPLAY command, only MyAttribute[3]
and MyAttribute[5] have defined values, with those values being 3 and 5,
respectively.

The second VARIABLE ATTRIBUTE command deletes MyAttribute[2], which
renumbers the subsequent attribute array names.

The table produced by the second DISPLAY command indicates that the attribute
value of 3 is now associated with MyAttribute[2] and the value of 5 is now
associated with MyAttribute[4].

The last VARIABLE ATTRIBUTE command deletes all attributes in the MyAttribute
array, since it specifies the array root name without an integer value in brackets.

Using Variable Properties As Templates

You can reuse the assigned variable properties in a data file as templates for new data
files or other variables in the same data file, selectively applying different properties to
different variables.

Example

The data and the assigned variable properties at the beginning of this chapter are saved
in the SPSS-format data file variable_properties.sav. In this example, we apply some
of those variable properties to a new data file with similar variables.

*apply_properties.sps.
DATA LIST LIST

/id (F3) Interview_date (ADATE10) Age (F3) Gender (A1) Income_category (F1)
attitude1 to attitude4(4F1).

BEGIN DATA
456 11/1/2002 55 m 3 5 1 3 1



103

Variable and File Properties

789 10/24/02 25 f 3 2 3 4 3
131 10-24-02 900 f 8 2 9 3 4
659 10/29/2002 62 m 9 2 3 5 3
217 10/26/2002 39 f 7 9 3 2 1
399 10/30/2002 24 f 4 3 5 1 5
end data.
APPLY DICTIONARY

/FROM 'C:\examples\data\variable_properties.sav'
/SOURCE VARIABLES = Interview_date Age Gender Income_category
/VARINFO ALL.

APPLY DICTIONARY
/FROM 'C:\examples\data\variable_properties.sav'
/SOURCE VARIABLES = opinion1
/TARGET VARIABLES = attitude1 attitude2 attitude3 attitude4
/VARINFO LEVEL MISSING VALLABELS.

The first APPLY DICTIONARY command applies all variable properties from the
specified SOURCE VARIABLES in variable_properties.sav to variables in the new
data file with matching names and data types. For example, Income_category in
the new data file now has the same variable label, value labels, missing values,
and measurement level (and a few other properties) as the variable of the same
name in the source data file.

The second APPLY DICTIONARY command applies selected properties from the
variable opinion1 in the source data file to the four attitude variables in the new
data file. The selected properties are measurement level, missing values, and
value labels.

Since it is unlikely that the variable label for opinion1 would be appropriate for all
four attitude variables, the variable label is not included in the list of properties to
apply to the variables in the new data file.

File Properties
File properties, such as a descriptive file label or comments that describe the change
history of the data, are useful for data that you plan to save and store in SPSS format.

Example

*file_properties.sps.
DATA LIST FREE /var1.
BEGIN DATA
1 2 3
END DATA.
FILE LABEL



104

Chapter 5

Fake data generated with Data List and inline data.
ADD DOCUMENT

'Original version of file prior to transformations.'.
DATAFILE ATTRIBUTE ATTRIBUTE=VersionNumber ('1').
SAVE OUTFILE='c:\temp\temp.sav'.
NEW FILE.
GET FILE 'c:\temp\temp.sav'.
DISPLAY DOCUMENTS.
DISPLAY ATTRIBUTES.

Figure 5-4
File properties displayed in output

FILE LABEL creates a descriptive label of up to 64 bytes. The label is displayed
in the Notes table.

ADD DOCUMENT saves a block of text of any length, along with the date the text
was added to the data file. The text from each ADD DOCUMENT command is
appended to the end of the list of documentation. (Use DROP DOCUMENTS to
delete all document text.) Use DISPLAY DOCUMENTS to display document text.

DATAFILE ATTRIBUTE creates custom file attributes. You can create data file
attribute arrays using the same conventions used for defining variable attribute
arrays. For more information, see “Custom Variable Properties” on p. 100. Use
DISPLAY ATTRIBUTES to display custom attribute values.



Chapter

6
Data Transformations

In an ideal situation, your raw data are perfectly suitable for the reports and analyses
that you need. Unfortunately, this is rarely the case. Preliminary analysis may reveal
inconvenient coding schemes or coding errors, or data transformations may be required
in order to coax out the true relationship between variables.

You can perform data transformations ranging from simple tasks, such as collapsing
categories for reports, to more advanced tasks, such as creating new variables based on
complex equations and conditional statements.

Recoding Categorical Variables

You can use the RECODE command to change, rearrange, and/or consolidate values
of a variable. For example, questionnaires often use a combination of high-low and
low-high rankings. For reporting and analysis purposes, you probably want these all
coded in a consistent manner.

*recode.sps.
DATA LIST FREE /opinion1 opinion2.
BEGIN DATA
1 5
2 4
3 3
4 2
5 1
END DATA.
RECODE opinion2
(1 = 5) (2 = 4) (4 = 2) (5 = 1)
(ELSE = COPY)
INTO opinion2_new.

EXECUTE.
VALUE LABELS opinion1 opinion2_new

1 'Really bad' 2 'Bad' 3 'Blah'
4 'Good' 5 'Terrific!'.

105



106

Chapter 6

The RECODE command essentially reverses the values of opinion2.

ELSE = COPY retains the value of 3 (which is the middle value in either direction)
and any other unspecified values, such as user-missing values, which would
otherwise be set to system-missing for the new variable.

INTO creates a new variable for the recoded values, leaving the original variable
unchanged.

Banding Scale Variables

Creating a small number of discrete categories from a continuous scale variable is
sometimes referred to as banding. For example, you can recode salary data into a few
salary range categories. Although it is not difficult to write command syntax to band a
scale variable into range categories, we recommend that you try the Visual Bander,
available on the Transform menu, because it can help you make the best recoding
choices by showing the actual distribution of values and where your selected category
boundaries occur in the distribution. It also provides a number of different banding
methods and can automatically generate descriptive labels for the banded categories.



107

Data Transformations

Figure 6-1
Visual Bander

The histogram shows the distribution of values for the selected variable. The
vertical lines indicate the banded category divisions for the specified range
groupings.

In this example, the range groupings were automatically generated using the Make
Cutpoints dialog box, and the descriptive category labels were automatically
generated with the Make Labels button.

You can use the Make Cutpoints dialog box to create banded categories based on
equal width intervals, equal percentiles (equal number of cases in each category),
or standard deviations.



108

Chapter 6

Figure 6-2
Make Cutpoints dialog box

You can use the Paste button in the Visual Bander to paste the command syntax
for your selections into a command syntax window. The RECODE command syntax
generated by the Visual Bander provides a good model for a proper recoding method.

*visual_bander.sps.
GET FILE = 'c:\examples\data\employee data.sav'.
***commands generated by Visual Bander***.
RECODE salary

( MISSING = COPY ) ( LO THRU 25000 =1 ) ( LO THRU 50000 =2 )
( LO THRU 75000 =3 ) ( LO THRU HI = 4 )
INTO salary_category.

VARIABLE LABELS salary_category 'Current Salary (Banded)'.
FORMAT salary_category (F5.0).
VALUE LABELS salary_category

1 '<= $25,000'
2 '$25,001 - $50,000'
3 '$50,001 - $75,000'
4 '$75,001+'
0 'missing'.

MISSING VALUES salary_category ( 0 ).
VARIABLE LEVEL salary_category ( ORDINAL ).
EXECUTE.



109

Data Transformations

The RECODE command encompasses all possible values of the original variable.

MISSING = COPY preserves any user-missing values from the original variable.
Without this, user-missing values could be inadvertently combined into a
non-missing category for the new variable.

The general recoding scheme of LO THRU value ensures that no values fall through
the cracks. For example, 25001 THRU 50000 would not include a value of
25000.50.

Since the RECODE expression is evaluated from left to right and each original
value is recoded only once, each subsequent range specification can start with LO
because this means the lowest remaining value that has not already been recoded.

LO THRU HI includes all remaining values (other than system-missing) not
included in any of the other categories, which in this example should be any salary
value above $75,000.

INTO creates a new variable for the recoded values, leaving the original variable
unchanged. Since banding or combining/collapsing categories can result in loss of
information, it is a good idea to create a new variable for the recoded values rather
than overwriting the original variable.

The VALUE LABELS and MISSING VALUES commands generated by the Visual
Bander preserve the user-missing category and its label from the original variable.

Simple Numeric Transformations
You can perform simple numeric transformations using the standard programming
language notation for addition, subtraction, multiplication, division, exponents, and
so on.

*numeric_transformations.sps.
DATA LIST FREE /var1.
BEGIN DATA
1 2 3 4 5
END DATA.
COMPUTE var2 = 1.
COMPUTE var3 = var1*2.
COMPUTE var4 = ((var1*2)**2)/2.
EXECUTE.

COMPUTE var2 = 1 creates a constant with a value of 1.



110

Chapter 6

COMPUTE var3 = var1*2 creates a new variable that is twice the value of var1.

COMPUTE var4 = ((var1*2)**2)/2 first multiplies var1 by 2, then squares
that value, and finally divides the result by 2.

Arithmetic and Statistical Functions

In addition to simple arithmetic operators, you can also transform data with a wide
variety of functions, including arithmetic and statistical functions.

*numeric_functions.sps.
DATA LIST LIST (",") /var1 var2 var3 var4.
BEGIN DATA
1, , 3, 4
5, 6, 7, 8
9, , , 12
END DATA.
COMPUTE Square_Root = SQRT(var4).
COMPUTE Remainder = MOD(var4, 3).
COMPUTE Average = MEAN.3(var1, var2, var3, var4).
COMPUTE Valid_Values = NVALID(var1 TO var4).
COMPUTE Trunc_Mean = TRUNC(MEAN(var1 TO var4)).
EXECUTE.

All functions take one or more arguments, enclosed in parentheses. Depending
on the function, the arguments can be constants, expressions, and/or variable
names—or various combinations thereof.

SQRT(var4) returns the square root of the value of var4 for each case.

MOD(var4, 3) returns the remainder (modulus) from dividing the value of var4
by 3.

MEAN.3(var1, var2, var3, var4) returns the mean of the four specified
variables, provided that at least three of them have non-missing values. The divisor
for the calculation of the mean is the number of non-missing values.

NVALID(var1 TO var4) returns the number of valid, non-missing values for the
inclusive range of specified variables. For example, if only two of the variables
have non-missing values for a particular case, the value of the computed variable
is 2 for that case.

TRUNC(MEAN(var1 TO var4)) computes the mean of the values for the
inclusive range of variables and then truncates the result. Since no minimum
number of non-missing values is specified for the MEAN function, a mean will be



111

Data Transformations

calculated (and truncated) as long as at least one of the variables has a non-missing
value for that case.

Figure 6-3
Variables computed with arithmetic and statistical functions

For a complete list of arithmetic and statistical functions, see “Transformation
Expressions” in the “Universals” section of the SPSS Command Syntax Reference.

Random Value and Distribution Functions

Random value and distribution functions generate random values based on the
specified type of distribution and parameters, such as mean, standard deviation, or
maximum value.

*random_functons.sps.
NEW FILE.
SET SEED 987987987.
*create 1,000 cases with random values.
INPUT PROGRAM.
- LOOP #I=1 TO 1000.
- COMPUTE Uniform_Distribution = UNIFORM(100).
- COMPUTE Normal_Distribution = RV.NORMAL(50,25).
- COMPUTE Poisson_Distribution = RV.POISSON(50).
- END CASE.
- END LOOP.
- END FILE.
END INPUT PROGRAM.
FREQUENCIES VARIABLES = ALL

/HISTOGRAM /FORMAT = NOTABLE.



112

Chapter 6

The INPUT PROGRAM uses a LOOP structure to generate 1,000 cases.

For each case, UNIFORM(100) returns a random value from a uniform distribution
with values that range from 0 to 100.

RV.NORMAL(50, 25) returns a random value from a normal distribution with a
mean of 50 and a standard deviation of 25.

RV.POISSON(50) returns a random value from a Poisson distribution with a
mean of 50.

The FREQUENCIES command produces histograms of the three variables that show
the distributions of the randomly generated values.

Figure 6-4
Histograms of randomly generated values for different distributions

Random variable functions are available for a variety of distributions, including
Bernoulli, Cauchy, Weibull, and others. For a complete list of random variable
functions, see “Random Variable and Distribution Functions” in the “Universals”
section of the SPSS Command Syntax Reference.

String Manipulation

Since just about the only restriction you can impose on string variables is the maximum
number of characters, string values may often be recorded in an inconsistent manner
and/or contain important bits of information that would be more useful if they could
be extracted from the rest of the string.



113

Data Transformations

Changing the Case of String Values

Perhaps the most common problem with string values is inconsistent capitalization.
Since string values are case sensitive, a value of “male” is not the same as a value of
“Male.” This example converts all values of a string variable to lowercase letters.

*string_case.sps.
DATA LIST FREE /gender (A6).
BEGIN DATA
Male Female
male female
MALE FEMALE
END DATA.
COMPUTE gender=LOWER(gender).
EXECUTE.

The LOWER function converts all uppercase letters in the value of gender to
lowercase letters, resulting in consistent values of “male” and “female.”

You can use the UPCASE function to convert string values to all uppercase letters.

Combining String Values

You can combine multiple string and/or numeric values to create new string variables.
For example, you could combine three numeric variables for area code, exchange, and
number into one string variable for telephone number with dashes between the values.

*concat_string.sps.
DATA LIST FREE /tel1 tel2 tel3 (3F4).
BEGIN DATA
111 222 3333
222 333 4444
333 444 5555
555 666 707
END DATA.
STRING telephone (A12).
COMPUTE telephone =

CONCAT((STRING(tel1, N3)), "-",
(STRING(tel2, N3)), "-",
(STRING(tel3, N4))).

EXECUTE.

The STRING command defines a new string variable that is 12 characters long.
Unlike new numeric variables, which can be created by transformation commands,
you must define new string variables before using them in any transformations.



114

Chapter 6

The COMPUTE command combines two string manipulation functions to create the
new telephone number variable.

The CONCAT function concatenates two or more string values. The general form of
the function is CONCAT(string1, string2, ...). Each argument can be a
variable name, an expression, or a literal string enclosed in quotes.

Each argument of the CONCAT function must evaluate to a string; so we use the
STRING function to treat the numeric values of the three original variables as
strings. The general form of the function is STRING(value, format). The
value argument can be a variable name, a number, or an expression. The format
argument must be a valid numeric format. In this example, we use N format to
support leading zeros in values (for example, 0707).

The dashes in quotes are literal strings that will be included in the new string value;
a dash will be displayed between the area code and exchange and between the
exchange and number.

Figure 6-5
Original numeric values and concatenated string values

Taking Strings Apart

In addition to being able to combine strings, you can also take them apart.



115

Data Transformations

Example

A dataset contains telephone numbers recorded as strings. You want to create separate
variables for the three values that comprise the phone number. You know that each
number contains 10 digits—but some contain spaces and/or dashes between the three
portions of the number, and some do not.

*replace_substr.sps.
***Create some inconsistent sample numbers***.
DATA LIST FREE (",") /telephone (A16).
BEGIN DATA
111-222-3333
222 - 333 - 4444
333 444 5555
4445556666
555-666-0707
END DATA.
*First remove all extraneous spaces and dashes.
STRING #telstr (A16).
COMPUTE #telstr=REPLACE(telephone, " ", "").
COMPUTE #telstr=REPLACE(#telstr, "-", "").
*Now extract the parts.
COMPUTE tel1=NUMBER(SUBSTR(#telstr, 1, 3), F5).
COMPUTE tel2=NUMBER(SUBSTR(#telstr, 4, 3), F5).
COMPUTE tel3=NUMBER(SUBSTR(#telstr, 7), F5).
EXECUTE.
FORMATS tel1 tel2 (N3) tel3 (N4).

The first task is to remove any spaces or dashes from the values, which is
accomplished with the two REPLACE functions. The spaces and dashes are
replaced with null strings, and the telephone number without any dashes or spaces
is stored in the temporary variable #telstr.

The NUMBER function converts a number expressed as a string to a numeric value.
The basic format is NUMBER(value, format). The value argument can be a
variable name, a number expressed as a string in quotes, or an expression. The
format argument must be a valid numeric format; this format is used to determine
the numeric value of the string. In other words, the format argument says, “Read
the string as if it were a number in this format.”

The value argument for the NUMBER function for all three new variables is an
expression using the SUBSTR function. The general form of the function is
SUBSTR(value, position, length). The value argument can be a variable
name, an expression, or a literal string enclosed in quotes. The position argument
is a number that indicates the starting character position within the string.



116

Chapter 6

The optional length argument is a number that specifies how many characters
to read starting at the value specified on the position argument. Without the
length argument, the string is read from the specified starting position to the
end of the string value. So SUBSTR("abcd", 2, 2) would return “bc,” and
SUBSTR("abcd", 2) would return “bcd.”

For tel1, SUBSTR(#telstr, 1, 3) defines a substring three characters long,
starting with the first character in the original string.

For tel2, SUBSTR(#telstr, 4, 3) defines a substring three characters long,
starting with the fourth character in the original string.

For tel3, SUBSTR(#telstr, 7) defines a substring that starts with the seventh
character in the original string and continues to the end of the value.

FORMATS assigns N format to the three new variables for numbers with leading
zeros (for example, 0707).

Figure 6-6
Substrings extracted and converted to numbers

Example

This example takes a single variable containing first, middle, and last name and creates
three separate variables for each part of the name. Unlike the example with telephone
numbers, you can’t identify the start of the middle or last name by an absolute position
number, because you don’t know how many characters are contained in the preceding
parts of the name. Instead, you need to find the location of the spaces in the value to
determine the end of one part and the start of the next—and some values only contain a
first and last name, with no middle name.



117

Data Transformations

*substr_index.sps.
DATA LIST FREE (",") /name (A20).
BEGIN DATA
Hugo Hackenbush
Rufus T. Firefly
Boris Badenoff
Rocket J. Squirrel
END DATA.
STRING #n fname mname lname(a20).
COMPUTE #n = name.
VECTOR vname=fname TO lname.
LOOP #i = 1 to 2.
- COMPUTE #space = INDEX(#n," ").
- COMPUTE vname(#i) = SUBSTR(#n,1,#space-1).
- COMPUTE #n = SUBSTR(#n,#space+1).
END LOOP.
COMPUTE lname=#n.
DO IF lname="".
- COMPUTE lname=mname.
- COMPUTE mname="".
END IF.
EXECUTE.

A temporary (scratch) variable, #n, is declared and set to the value of the original
variable. The three new string variables are also declared.

The VECTOR command creates a vector vname that contains the three new string
variables (in file order).

The LOOP structure iterates twice to produce the values for fname and mname.

COMPUTE #space = INDEX(#n," ") creates another temporary variable,
#space, that contains the position of the first space in the string value.

On the first iteration, COMPUTE vname(#i) = SUBSTR(#n,1,#space-1)
extracts everything prior to the first dash and sets fname to that value.

COMPUTE #n = SUBSTR(#n,#space+1) then sets #tn to the remaining portion
of the string value after the first space.

On the second iteration, COMPUTE #space... sets #space to the position of the
“first” space in the modified value of #n. Since the first name and first space
have been removed from #n, this is the position of the space between the middle
and last names.

Note: If there is no middle name, then the position of the “first” space is now the
first space after the end of the last name. Since strings values are right-padded to
the defined width of the string variable, and the defined width of #n is the same as



118

Chapter 6

the original string variable, there should always be at least one blank space at the
end of the value after removing the first name.

COMPUTE vname(#i)... sets mname to the value of everything up to the “first”
space in the modified version of #n, which is everything after the first space and
before the second space in the original string value. If the original value doesn’t
contain a middle name, then the last name will be stored in mname. (We’ll fix
that later.)

COMPUTE #n... then sets #n to the remaining segment of the string
value—everything after the “first” space in the modified value, which is everything
after the second space in the original value.

After the two loop iterations are complete, COMPUTE lname=#n sets lname to the
final segment of the original string value.

The DO IF structure checks to see if the value of lname is blank. If it is, then the
name only had two parts to begin with, and the value currently assigned to mname
is moved to lname.

Figure 6-7
Substring extraction using INDEX function

Working with Dates and Times

Dates and times come in a wide variety of formats, ranging from different display
formats (for example, 10/28/1986 versus 28-OCT-1986) to separate entries for each
component of a date or time (for example, a day variable, a month variable, and a year



119

Data Transformations

variable). A wide variety of features are available for dealing with dates and times,
including:

Support for multiple input and display formats for dates and times

Storing dates and times internally as consistent numbers regardless of the input
format, making it possible to compare date/time values and calculate the difference
between values even if they were not entered in the same format

Functions that can convert string dates to real dates, extract portions of date values
(such as simply the month or year) or other information that is associated with a
date (such as day of the week), and create calendar dates from separate values
for day, month, and year

Date Input and Display Formats
SPSS automatically converts date information from databases, Excel files, and SAS
files to equivalent SPSS date format variables. SPSS can also recognize dates in text
data files stored in a variety of formats. All you need to do is specify the appropriate
format when reading the text data file.

Date format General form Example SPSS date format
specification

International date dd-mmm-yyyy 28-OCT-2003 DATE

American date mm/dd/yyyy 10/28/2003 ADATE

Sortable date yyyy/mm/dd 2003/10/28 SDATE

Julian date yyyyddd 2003301 JDATE

Time hh:mm:ss 11:35:43 TIME

Days and time dd hh:mm:ss 15 08:27:12 DTIME

Date and time dd-mmm-yyyy hh:mm:ss 20-JUN-2003 12:23:01 DATETIME

Day of week (name of day) Tuesday WKDAY

Month of year (name of month) January MONTH

Note: For a complete list of date and time formats, see “Date and Time” in the
“Universals” section of the SPSS Command Syntax Reference.

Example

DATA LIST FREE(" ")
/StartDate(ADATE) EndDate(DATE).



120

Chapter 6

BEGIN DATA
10/28/2002 28-01-2003
10-29-02 15,03,03
01.01.96 01/01/97
1/1/1997 01-JAN-1998
END DATA.

Both two- and four-digit year specifications are recognized. Use SET EPOCH to
set the starting year for two-digit years.

Dashes, periods, commas, slashes, or blanks can be used as delimiters in the
day-month-year input.

Months can be represented in digits, Roman numerals, or three-character
abbreviations, and they can be fully spelled out. Three-letter abbreviations and
fully spelled out month names must be English month names; month names in
other languages are not recognized.

In time specifications, colons can be used as delimiters between hours, minutes,
and seconds. Hours and minutes are required, but seconds are optional. A period
is required to separate seconds from fractional seconds. Hours can be of unlimited
magnitude, but the maximum value for minutes is 59 and for seconds is 59.999….

Internally, dates and date/times are stored as the number of seconds from October
14, 1582, and times are stored as the number of seconds from midnight.

Note: SET EPOCH has no effect on existing dates in the file. You must set this value
before reading or entering date values. The actual date stored internally is determined
when the date is read; changing the epoch value afterward will not change the century
for existing date values in the file.

Using FORMATS to Change the Display of Dates

Dates in SPSS are often referred to as date-format variables because the dates you see
are really just display formats for underlying numeric values. Using the FORMATS
command, you can change the display formats of a date-format variable, including
changing to a format that displays only a certain portion of the date, such as the month
or day of the week.

Example

FORMATS StartDate(DATE11).



121

Data Transformations

A date originally displayed as 10/28/02 would now be displayed as 10-OCT-2002.

The number following the date format specifies the display width. DATE9 would
display as 10-OCT-02.

Some of the other format options are shown in the following table:

Original display
format

New format
specification

New display
format

10/28/02 SDATE11 2002/10/28

10/28/02 WKDAY7 MONDAY

10/28/02 MONTH12 OCTOBER

10/28/02 MOYR9 OCT 2002

10/28/02 QYR6 4 Q 02

The underlying values remain the same; only the display format changes with the
FORMATS command.

Converting String Dates to Date-Format Numeric Variables

Under some circumstances, SPSS may read valid date formats as string variables
instead of date-format numeric variables. For example, if you use the Text Wizard to
read text data files, the wizard reads dates as string variables by default. If the string
date values conform to one of the recognized date formats, it is easy to convert the
strings to date-format numeric variables.

Example

COMPUTE numeric_date = NUMBER(string_date, ADATE)
FORMATS numeric_date (ADATE10).

The NUMBER function indicates that any numeric string values should be converted
to those numbers.

ADATE tells the program to assume that the strings represent dates of the general
form mm/dd/yyyy. It is important to specify the date format that corresponds to
the way the dates are represented in the string variable, since string dates that



122

Chapter 6

do not conform to that format will be assigned the system-missing value for the
new numeric variable.

The FORMATS command specifies the date display format for the new numeric
variable. Without this command, the values of the new variable would be displayed
as very large integers.

Date and Time Functions

Many date and time functions are available, including:

Aggregation functions to create a single date variable from multiple other variables
representing day, month, and year.

Conversion functions to convert from one date/time measurement unit to
another—for example, converting a time interval expressed in seconds to number
of days.

Extraction functions to obtain different types of information from date and time
values—for example, obtaining just the year from a date value, or the day of the
week associated with a date.

Note: Date functions that take date values or year values as arguments interpret
two-digit years based on the century defined by SET EPOCH. By default, two-digit
years assume a range beginning 69 years prior to the current date and ending 30 years
after the current date. When in doubt, use four-digit year values.

Aggregating Multiple Date Components into a Single Date-Format Variable

Sometimes, dates and times are recorded as separate variables for each unit of the date.
For example, you might have separate variables for day, month, and year or separate
hour and minute variables for time. You can use the DATE and TIME functions to
combine the constituent parts into a single date/time variable.

Example

COMPUTE datevar=DATE.MDY(month, day, year).
COMPUTE monthyear=DATE.MOYR(month, year).
COMPUTE time=TIME.HMS(hours, minutes).
FORMATS datevar (ADATE10) monthyear (MOYR9) time(TIME9).



123

Data Transformations

DATE.MDY creates a single date variable from three separate variables for month,
day, and year.

DATE.MOYR creates a single date variable from two separate variables for month
and year. Internally, this is stored as the same value as the first day of that month.

TIME.HMS creates a single time variable from two separate variables for hours
and minutes.

The FORMATS command applies the appropriate display formats to each of the
new date variables.

For a complete list of DATE and TIME functions, see “Date and Time” in the
“Universals” section of the SPSS Command Syntax Reference.

Calculating and Converting Date and Time Intervals

Since dates and times are stored internally in seconds, the result of date and time
calculations is also expressed in seconds. But if you want to know how much time
elapsed between a start date and an end date, you probably do not want the answer in
seconds. You can use CTIME functions to calculate and convert time intervals from
seconds to minutes, hours, or days.

Example

*date_functions.sps.
DATA LIST FREE (",")

/StartDate (ADATE12) EndDate (ADATE12)
StartDateTime(DATETIME20) EndDateTime(DATETIME20)
StartTime (TIME10) EndTime (TIME10).

BEGIN DATA
3/01/2003, 4/10/2003
01-MAR-2003 12:00, 02-MAR-2003 12:00
09:30, 10:15
END DATA.
COMPUTE days = CTIME.DAYS(EndDate-StartDate).
COMPUTE hours = CTIME.HOURS(EndDateTime-StartDateTime).
COMPUTE minutes = CTIME.MINUTES(EndTime-StartTime).
EXECUTE.

CTIME.DAYS calculates the difference between EndDate and StartDate in
days—in this example, 40 days.



124

Chapter 6

CTIME.HOURS calculates the difference between EndDateTime and StartDateTime
in hours—in this example, 24 hours.

CTIME.MINUTES calculates the difference between EndTime and StartTime in
minutes—in this example, 45 minutes.

Calculating Number of Years between Dates

You can use the DATEDIFF function to calculate the difference between two dates in
various duration units. The general form of the function is:

DATEDIFF(datetime2, datetime1, “unit”)

where datetime2 and datetime1 are both date or time format variables (or numeric
values that represent valid date/time values), and “unit” is one of the following string
literal values enclosed in quotes: years, quarters, months, weeks, hours, minutes, or
seconds.

Example

*datediff.sps.
DATA LIST FREE /BirthDate StartDate EndDate (3ADATE).
BEGIN DATA
8/13/1951 11/24/2002 11/24/2004
10/21/1958 11/25/2002 11/24/2004
END DATA.
COMPUTE Age=DATEDIFF($TIME, BirthDate, 'years').
COMPUTE DurationYears=DATEDIFF(EndDate, StartDate, 'years').
COMPUTE DurationMonths=DATEDIFF(EndDate, StartDate, 'months').
EXECUTE.

Age in years is calculated by subtracting BirthDate from the current date, which
we obtain from the system variable $TIME.

The duration of time between the start date and end date variables is calculated in
both years and months.

The DATEDIFF function returns the truncated integer portion of the value in the
specified units. In this example, even though the two start dates are only one day
apart, that results in a one-year difference in the values of DurationYears for the
two cases (and a one-month difference for DurationMonths).



125

Data Transformations

Adding to or Subtracting from a Date to Find Another Date

If you need to calculate a date that is a certain length of time before or after a given
date, you can use the TIME.DAYS function.

Example

Prospective customers can use your product on a trial basis for 30 days, and you need
to know when the trial period ends—and just to make it interesting, if the trial period
ends on a Saturday or Sunday, you want to extend it to the following Monday.

*date_functions2.sps.
DATA LIST FREE (" ") /StartDate (ADATE10).
BEGIN DATA
10/29/2003 10/30/2003
10/31/2003 11/1/2003
11/2/2003 11/4/2003
11/5/2003 11/6/2003
END DATA.
COMPUTE expdate = StartDate + TIME.DAYS(30).
FORMATS expdate (ADATE10).
***if expdate is Saturday or Sunday, make it Monday***.
DO IF (XDATE.WKDAY(expdate) = 1).
- COMPUTE expdate = expdate + TIME.DAYS(1).
ELSE IF (XDATE.WKDAY(expdate) = 7).
- COMPUTE expdate = expdate + TIME.DAYS(2).
END IF.
EXECUTE.

TIME.DAYS(30) adds 30 days to StartDate, and then the new variable expdate
is given a date display format.

The DO IF structure uses an XDATE.WKDAY extraction function to see if expdate is
a Sunday (1) or a Saturday (7), and then adds one or two days, respectively.

Example

You can also use the DATESUM function to calculate a date that is a specified length
of time before or after a specified date.

*datesum.sps.
DATA LIST FREE /StartDate (ADATE).
BEGIN DATA
10/21/2003
10/28/2003
10/29/2004
END DATA.



126

Chapter 6

COMPUTE ExpDate=DATESUM(StartDate, 3, 'years').
EXECUTE.
FORMATS ExpDate(ADATE10).

ExpDate is calculated as a date three years after StartDate.

The DATESUM function returns the date value in standard numeric format,
expressed as the number of seconds since the start of the Gregorian calendar in
1582; so, we use FORMATS to display the value in one of the standard date formats.

Extracting Date Information

A great deal of information can be extracted from date and time variables. In addition
to using XDATE functions to extract the more obvious pieces of information, such as
year, month, day, hour, and so on, you can obtain information such as day of the week,
week of the year, or quarter of the year.

Example

*date_functions3.sps.
DATA LIST FREE (",")

/StartDateTime (datetime25).
BEGIN DATA
29-OCT-2003 11:23:02
1 January 1998 1:45:01
21/6/2000 2:55:13
END DATA.
COMPUTE dateonly=XDATE.DATE(StartDateTime).
FORMATS dateonly(ADATE10).
COMPUTE hour=XDATE.HOUR(StartDateTime).
COMPUTE DayofWeek=XDATE.WKDAY(StartDateTime).
COMPUTE WeekofYear=XDATE.WEEK(StartDateTime).
COMPUTE quarter=XDATE.QUARTER(StartDateTime).
EXECUTE.



127

Data Transformations

Figure 6-8
Extracted date information

The date portion extracted with XDATE.DATE returns a date expressed in seconds;
so, we also include a FORMATS command to display the date in a readable date
format.

Day of the week is an integer between 1 (Sunday) and 7 (Saturday).

Week of the year is an integer between 1 and 53 (January 1–7 = 1).

For a complete list of XDATE functions, see “Date and Time” in the “Universals”
section of the SPSS Command Syntax Reference.





Chapter

7
Cleaning and Validating Data

Invalid—or at least questionable—data values can include anything from simple
out-of-range values to complex combinations of values that should not occur.

Finding and Displaying Invalid Values
The first step in cleaning and validating data is often to simply identify and investigate
questionable values.

Example

All of the variables in a file may have values that appear to be valid when examined
individually, but certain combinations of values for different variables may indicate
that at least one of the variables has either an invalid value or at least one that is
suspect. For example, a pregnant male clearly indicates an error in one of the values,
whereas a pregnant female older than 55 may not be invalid but should probably be
double-checked.

*invalid_data3.sps.
DATA LIST FREE /age gender pregnant.
BEGIN DATA
25 0 0
12 1 0
80 1 1
47 0 0
34 0 1
9 1 1
19 0 0
27 0 1
END DATA.
VALUE LABELS gender 0 'Male' 1 'Female'

/pregnant 0 'No' 1 'Yes'.
DO IF pregnant = 1.
- DO IF gender = 0.
- COMPUTE valueCheck = 1.

129



130

Chapter 7

- ELSE IF gender = 1.
- DO IF age > 55.
- COMPUTE valueCheck = 2.
- ELSE IF age < 12.
- COMPUTE valueCheck = 3.
- END IF.
- END IF.
ELSE.
- COMPUTE valueCheck=0.
END IF.
VALUE LABELS valueCheck

0 'No problems detected'
1 'Male and pregnant'
2 'Age > 55 and pregnant'
3 'Age < 12 and pregnant'.

FREQUENCIES VARIABLES = valueCheck.

The variable valueCheck is first set to 0.

The outer DO IF structure restricts the actions for all transformations within the
structure to cases recorded as pregnant (pregnant = 1).

The first nested DO IF structure checks for males (gender = 0) and assigns
those cases a value of 1 for valueCheck.

For females (gender = 1), a second nested DO IF structure, nested within the
previous one, is initiated, and valueCheck is set to 2 for females over the age of 55
and 3 for females under the age of 12.

The VALUE LABELS command assigns descriptive labels to the numeric values of
valueCheck, and the FREQUENCIES command generates a table that summarizes
the results.

Figure 7-1
Frequency table summarizing detected invalid or suspect values



131

Cleaning and Validating Data

Example

A data file contains a variable quantity that represents the number of products sold to
a customer, and the only valid values for this variable are integers. The following
command syntax checks for and then reports all cases with non-integer values.

*invalid_data.sps.
*First we provide some simple sample data.
DATA LIST FREE /quantity.
BEGIN DATA
1 1.1 2 5 8.01
END DATA.
*Now we look for non-integers values
in the sample data.

COMPUTE filtervar=(MOD(quantity,1)>0).
FILTER BY filtervar.
SUMMARIZE

/TABLES=quantity
/FORMAT=LIST CASENUM NOTOTAL
/CELLS=COUNT.

FILTER OFF.

Figure 7-2
Table listing all cases with non-integer values

The COMPUTE command creates a new variable, filtervar. If the remainder (the
MOD function) of the original variable (quantity) divided by 1 is greater than 0,
then the expression is true and filtervar will have a value of 1, resulting in all
non-integer values of quantity having a value of 1 for filtervar. For integer values,
filtervar is set to 0.

The FILTER command filters out any cases with a value of 0 for the specified filter
variable. In this example, it will filter out all of the cases with integer values for
quantity, since they have a value of 0 for filtervar.

The SUMMARIZE command simply lists all of the nonfiltered cases, providing both
the case number and the value of quantity for each case, and a table listing all
of the cases with non-integer values.

The second FILTER command turns off filtering, making all cases available for
subsequent procedures.



132

Chapter 7

Excluding Invalid Data from Analysis

With a slight modification, you can change the computation of the filter variable in
the above example to filter out cases with invalid values:

COMPUTE filtrvar=(MOD(quantity,1)=0).
FILTER BY filtrvar.

Now all cases with integer values for quantity have a value of 1 for the filter
variable, and all cases with non-integer values for quantity are filtered out because
they now have a value of 0 for the filter variable.

This solution filters out the entire case, including valid values for other variables in
the data file. If, for example, another variable recorded total purchase price, any
case with an invalid value for quantity would be excluded from computations
involving total purchase price (such as average total purchase price), even if that
case has a valid value for total purchase price.

A better solution is to assign invalid values to a user-missing category, which identifies
values that should be excluded or treated in a special manner for that specific variable,
leaving other variables for cases with invalid values for quantity unaffected.

*invalid_data2.sps.
DATA LIST FREE /quantity.
BEGIN DATA
1 1.1 2 5 8.01
END DATA.
IF (MOD(quantity,1) > 0) quantity = (-9).
MISSING VALUES quantity (-9).
VALUE LABELS quantity -9 "Non-integer values".

The IF command assigns a value of –9 to all non-integer values of quantity.

The MISSING VALUES command flags quantity values of –9 as user-missing,
which means that these values will either be excluded or treated in a special
manner by most procedures.

The VALUE LABELS command assigns a descriptive label to the user-missing
value.



133

Cleaning and Validating Data

Finding and Filtering Duplicates

Duplicate cases may occur in your data for many reasons, including:

Data-entry errors in which the same case is accidently entered more than once.

Multiple cases that share a common primary ID value but have different secondary
ID values, such as family members who live in the same house.

Multiple cases that represent the same case but with different values for variables
other than those that identify the case, such as multiple purchases made by the
same person or company for different products or at different times.

The Identify Duplicate Cases dialog box (Data menu) provides a number of useful
features for finding and filtering duplicate cases. You can paste the command syntax
from the dialog box selections into a command syntax window and then refine the
criteria used to define duplicate cases.

Example

In the data file duplicates.sav, each case is identified by two ID variables: ID_house,
which identifies each household, and ID_person, which identifies each person within
the household. If multiple cases have the same value for both variables, then they
represent the same case. In this example, that is not necessarily a coding error, since
the same person may have been interviewed on more than one occasion.

The interview date is recorded in the variable int_date, and for cases that match on
both ID variables, we want to ignore all but the most recent interview.

* duplicates_filter.sps.
GET FILE='c:\examples\data\duplicates.sav'.
SORT CASES BY ID_house(A) ID_person(A) int_date(A) .
MATCH FILES /FILE = *

/BY ID_house ID_person /LAST = MostRecent .
FILTER BY MostRecent .
EXECUTE.

SORT CASES sorts the data file by the two ID variables and the interview date.
The end result is that all cases with the same household ID are grouped together,
and within each household, cases with the same person ID are grouped together.
Those cases are sorted by ascending interview date; for any duplicates, the last
case will be the most recent interview date.



134

Chapter 7

Although MATCH FILES is typically used to merge two or more data files, you
can use FILE=* to match the active dataset with itself. In this case, that is useful
not because we want to merge data files but because we want another feature of
the command—the ability to identify the LAST case for each value of the key
variables specified on the BY subcommand.

BY ID_house ID_person defines a match as cases having the same values for
those two variables. The order of the BY variables must match the sort order of
the data file. In this example, the two variables are specified in the same order on
both the SORT CASES and MATCH FILES commands.

LAST = MostRecent assigns a value of 1 for the new variable MostRecent to
the last case in each matching group and a value of 0 to all other cases in each
matching group. Since the data file is sorted by ascending interview date within the
two ID variables, the most recent interview date is the last case in each matching
group. If there is only one case in a “group,” then it is also considered the “last”
case and is assigned a value of 1 for the new variable MostRecent.

FILTER BY MostRecent filters out any cases with a value of 0 for MostRecent,
which means that all but the case with the most recent interview date in each
duplicate group will be excluded from reports and analyses. Filtered-out cases are
indicated with a slash through the row number in Data View in the Data Editor.

Figure 7-3
Filtered duplicate cases in Data View



135

Cleaning and Validating Data

Example

You may not want to automatically exclude duplicates from reports; you may want to
examine them before deciding how to treat them. You could simply omit the FILTER
command at the end of the previous example and look at each group of duplicates in
the Data Editor, but if there are many variables and you are interested in examining
only the values of a few key variables, that might not be the optimal approach.

This example counts the number of duplicates in each group and then displays a
report of a selected set of variables for all duplicate cases, sorted in descending order
of the duplicate count, so the cases with the largest number of duplicates are displayed
first.

*duplicates_count.sps.
GET FILE='c:\examples\data\duplicates.sav'.
AGGREGATE OUTFILE = * MODE = ADDVARIABLES

/BREAK = ID_house ID_person
/DuplicateCount = N.

SORT CASES BY DuplicateCount (D).
COMPUTE filtervar=(DuplicateCount > 1).
FILTER BY filtervar.
SUMMARIZE

/TABLES=ID_house ID_person int_date DuplicateCount
/FORMAT=LIST NOCASENUM TOTAL
/TITLE='Duplicate Report'
/CELLS=COUNT.

The AGGREGATE command is used to create a new variable that represents the
number of cases for each pair of ID values.

OUTFILE = * MODE = ADDVARIABLES writes the aggregated results as new
variables in the active dataset. (This is the default behavior.)

The BREAK subcommand “aggregates” cases with matching values for the two ID
variables. In this example, that simply means that each case with the same two
values for the two ID variables will have the same values for any new variables
based on aggregated results.

DuplicateCount = N creates a new variable that represents the number of
cases for each pair of ID values. For example, the DuplicateCount value of 3 is
assigned to the three cases in the active dataset with the values of 102 and 1 for
ID_house and ID_person, respectively.

The SORT CASES command sorts the data file in descending order of the values of
DuplicateCount, so cases with the largest numbers of duplicates will be displayed
first in the subsequent report.



136

Chapter 7

COMPUTE filtervar=(DuplicateCount > 1) creates a new variable with a
value of 1 for any cases with a DuplicateCount value greater than 1 and a value of
0 for all other cases. So, all cases that are considered “duplicates” have a value of
1 for filtervar, and all unique cases have a value of 0.

FILTER BY filtervar selects all cases with a value of 1 for filtervar and filters
out all other cases. So, subsequent procedures will include only duplicate cases.

The SUMMARIZE command produces a report of the two ID variables, the interview
date, and the number of duplicates in each group for all duplicate cases. It also
displays the total number of duplicates. The cases are displayed in the current file
order, which is in descending order of the duplicate count value.

Figure 7-4
Summary report of duplicate cases

Data Validation Option

The Data Validation option provides two validation procedures:

VALIDATEDATA provides the ability to define and apply validation rules that
identify invalid data values. You can create rules that flag out-of-range values,
missing values, or blank values. You can also save variables that record individual
rule violations and the total number of rule violations per case.

DETECTANOMALY finds unusual observations that could adversely affect
predictive models. The procedure is designed to quickly detect unusual cases for
data-auditing purposes in the exploratory data analysis step, prior to any inferential
data analysis. This algorithm is designed for generic anomaly detection; that is, the
definition of an anomalous case is not specific to any particular application, such
as detection of unusual payment patterns in the healthcare industry or detection of
money laundering in the finance industry, in which the definition of an anomaly
can be well-defined.



137

Cleaning and Validating Data

Example

This example illustrates how you can use the Data Validation procedures to perform
a simple, initial evaluation of any dataset, without defining any special rules for
validating the data. The procedures provide many features not covered here (including
the ability to define and apply custom rules).

*data_validation.sps
***create some sample data***.
INPUT PROGRAM.
SET SEED 123456789.
LOOP #i=1 to 1000.
- COMPUTE notCategorical=RV.NORMAL(200,40).
- DO IF UNIFORM(100) < 99.8.
- COMPUTE mostlyConstant=1.
- COMPUTE mostlyNormal=RV.NORMAL(50,10).
- ELSE.
- COMPUTE mostlyConstant=2.
- COMPUTE mostlyNormal=500.
- END IF.
- END CASE.
END LOOP.
END FILE.
END INPUT PROGRAM.
VARIABLE LEVEL notCategorical mostlyConstant(nominal).
****Here's the real job****.
VALIDATEDATA VARIABLES=ALL.
DETECTANOMALY.

The input program creates some sample data with a few notable anomalies,
including a variable that is normally distributed, with the exception of a small
proportion of cases with a value far greater than all of the other cases, and a
variable where almost all of the cases have the same value. Additionally, the scale
variable notCategorical has been assigned the nominal measurement level.

VALIDATEDATA performs the default data validation routines, including checking
for categorical (nominal, ordinal) variables where more than 95% of the cases have
the same value or more than 90% of the cases have unique values.

DETECTANOMALY performs the default anomaly detection on all variables in the
dataset.



138

Chapter 7

Figure 7-5
Results from VALIDATEDATA

Figure 7-6
Results from DETECTANOMALY

The default VALIDATEDATA evaluation detects and reports that more than 95%
of cases for the categorical variable mostlyConstant have the same value and
more than 90% of cases for the categorical variable notCategorical have unique
values. The default evaluation, however, found nothing unusual to report in the
scale variable mostlyNormal.

The default DETECTANOMALY analysis reports any case with an anomaly index of
2 or more. In this example, three cases have an anomaly index of over 16. The
Anomaly Case Reason List table reveals that these three cases have a value of 500
for the variable mostlyNormal, while the mean value for that variable is only 52.



Chapter

8
Conditional Processing, Looping,
and Repeating

As with other programming languages, SPSS contains standard programming
structures that can be used to do many things. These include the ability to:

Perform actions only if some condition is true (if/then/else processing).

Repeat actions.

Create an array of elements.

Use loop structures.

Indenting Commands in Programming Structures

Indenting commands nested within programming structures is a fairly common
convention that makes code easier to read and debug. For compatibility with batch
production mode, however, each SPSS command should begin in the first column of a
new line. You can indent nested commands by inserting a plus (+) or minus (–) sign or
a period (.) in the first column of each indented command, as in:

DO REPEAT tempvar = var1, var2, var3.
+ COMPUTE tempvar = tempvar/10.
+ DO IF (tempvar >= 100). /*Then divide by 10 again.
+ COMPUTE tempvar = tempvar/10.
+ END IF.
END REPEAT.

139



140

Chapter 8

Conditional Processing
Conditional processing with SPSS commands is performed on a casewise basis: each
case is evaluated to determine if the condition is met. This is well-suited for tasks
such as setting the value of a new variable or creating a subset of cases based on the
value(s) of one or more existing variables.

Note: Conditional processing or flow control on a jobwise basis—such as running
different procedures for different variables based on data type or level of measurement
or determining which procedure to run next based on the results of the last
procedure—typically requires the type of functionality available only with the
programmability features discussed in the second part of this book.

Conditional Transformations

There are a variety of methods for performing conditional transformations, including:

Logical variables

One or more IF commands, each defining a condition and an outcome

If/then/else logic in a DO IF structure

Example

*if_doif1.sps.
DATA LIST FREE /var1.
BEGIN DATA
1 2 3 4
END DATA.
COMPUTE newvar1=(var1<3).
IF (var1<3) newvar2=1.
IF (var1>=3) newvar2=0.
DO IF var1<3.
- COMPUTE newvar3=1.
ELSE.
- COMPUTE newvar3=0.
END IF.
EXECUTE.

The logical variable newvar1 will have a value of 1 if the condition is true, a value
of 0 if it is false, and system-missing if the condition cannot be evaluated due to
missing data. While it requires only one simple command, logical variables are
limited to numeric values of 0, 1, and system-missing.



141

Conditional Processing, Looping, and Repeating

The two IF commands return the same result as the single COMPUTE command
that generated the logical variable. Unlike the logical variable, however, the result
of an IF command can be virtually any numeric or string value, and you are not
limited to two outcome results. Each IF command defines a single conditional
outcome, but there is no limit to the number of IF commands you can specify.

The DO IF structure also returns the same result—and, like the IF commands,
there is no limit on the value of the outcome or the number of possible outcomes.

Example

As long as all the conditions are mutually exclusive, the choice between IF and DO

IF may often be a matter of preference, but what if the conditions are not mutually
exclusive?

*if_doif2.sps
DATA LIST FREE /var1 var2.
BEGIN DATA
1 1
2 1
END DATA.
IF (var1=1) newvar1=1.
IF (var2=1) newvar1=2.
DO IF var1=1.
- COMPUTE newvar2=1.
ELSE IF var2=1.
- COMPUTE newvar2=2.
END IF.
EXECUTE.

The two IF statements are not mutually exclusive, since it’s possible for a case to
have a value of 1 for both var1 and var2. The first IF statement will assign a value
of 1 to newvar1 for the first case, and then the second IF statement will change
the value of newvar1 to 2 for the same case. In IF processing, the general rule
is “the last one wins.”

The DO IF structure evaluates the same two conditions, with different results. The
first case meets the first condition and the value of newvar2 is set to 1 for that
case. At this point, the DO IF structure moves on to the next case, because once a
condition is met, no further conditions are evaluated for that case. So the value
of newvar2 remains 1 for the first case, even though the second condition (which
would set the value to 2) is also true.



142

Chapter 8

Missing Values in DO IF Structures

Missing values can affect the results from DO IF structures because if the expression
evaluates to missing, then control passes immediately to the END IF command at that
point. To avoid this type of problem, you should attempt to deal with missing values
first in the DO IF structure before evaluating any other conditions.

* doif_elseif_missing.sps.

*create sample data with missing data.
DATA LIST FREE (",") /a.
BEGIN DATA
1, , 1 , ,
END DATA.

COMPUTE b=a.

* The following does NOT work since the second condition is never evaluated.
DO IF a=1.
- COMPUTE a1=1.
ELSE IF MISSING(a).
- COMPUTE a1=2.
END IF.

* On the other hand the following works.
DO IF MISSING(b).
- COMPUTE b1=2.
ELSE IF b=1.
- COMPUTE b1=1.
END IF.
EXECUTE.

The first DO IF will never yield a value of 2 for a1, because if a is missing, then
DO IF a=1 evaluates as missing, and control passes immediately to END IF. So
a1 will either be 1 or missing.

In the second DO IF, however, we take care of the missing condition first; so if
the value of b is missing, DO IF MISSING(b) evaluates as true and b1 is set
to 2; otherwise, b1 is set to 1.

In this example, DO IF MISSING(b) will always evaluate as either true or false, never
as missing, thereby eliminating the situation in which the first condition might evaluate
as missing and pass control to END IF without evaluating the other condition(s).



143

Conditional Processing, Looping, and Repeating

Figure 8-1
DO IF results with missing values displayed in Data Editor

Conditional Case Selection

If you want to select a subset of cases for analysis, you can either filter or delete the
unselected cases.

Example

*filter_select_if.sps.
DATA LIST FREE /var1.
BEGIN DATA
1 2 3 2 3
END DATA.
DATASET NAME filter.
DATASET COPY temporary.
DATASET COPY select_if.
*compute and apply a filter variable.
COMPUTE filterVar=(var1 ~=3).
FILTER By filtervar.
FREQUENCIES VARIABLES=var1.
*delete unselected cases from active dataset.
DATASET ACTIVATE select_if.
SELECT IF (var1~=3).
FREQUENCIES VARIABLES=var1.
*temporarily exclude unselected cases.
DATASET ACTIVATE temporary.
TEMPORARY.
SELECT IF (var1~=3).
FREQUENCIES VARIABLES=var1.
FREQUENCIES VARIABLES=var1.



144

Chapter 8

The COMPUTE command creates a new variable, filterVar. If var1 is not equal to 3,
filterVar is set to 1; if var1 is 3, filterVar is set to 0.

The FILTER command filters cases based on the value of filterVar. Any case with
a value other than 1 for filterVar is filtered out and is not included in subsequent
statistical and charting procedures. The cases remain in the dataset and can be
“reactivated” by changing the filter condition or turning filtering off (FILTER
OFF). Filtered cases are marked in the Data Editor with a diagonal line (slash)
through the row number.

SELECT IF deletes unselected cases from the active dataset, and those cases are
no longer available in that dataset.

The combination of TEMPORARY and SELECT IF temporarily deletes the
unselected cases. SELECT IF is a transformation, and TEMPORARY signals
the beginning of temporary transformations that are in effect only for the next
command that reads the data. For the first FREQUENCIES command following
these commands, cases with a value of 3 for var1 are excluded. For the second
FREQUENCIES command, however, cases with a value of 3 are now included again.

Simplifying Repetitive Tasks with DO REPEAT
A DO REPEAT structure allows you to repeat the same group of transformations
multiple times, thereby reducing the number of commands that you need to write. The
basic format of the command is:

DO REPEAT stand-in variable = variable or value list
/optional additional stand-in variable(s) …

transformation commands
END REPEAT PRINT.

The transformation commands inside the DO REPEAT structure are repeated for
each variable or value assigned to the stand-in variable.

Multiple stand-in variables and values can be specified in the same DO REPEAT
structure by preceding each additional specification with a forward slash.

The optional PRINT keyword after the END REPEAT command is useful when
debugging command syntax, since it displays the actual commands generated
by the DO REPEAT structure.

Note that when a stand-in variable is set equal to a list of variables, the variables do
not have to be consecutive in the data file. So DO REPEAT may be more useful than
VECTOR in some circumstances. For more information, see “Vectors” on p. 147.



145

Conditional Processing, Looping, and Repeating

Example

This example sets two variables to the same value.

* do_repeat1.sps.

***create some sample data***.
DATA LIST LIST /var1 var3 id var2.
BEGIN DATA
3 3 3 3
2 2 2 2
END DATA.
***real job starts here***.
DO REPEAT v=var1 var2.
- COMPUTE v=99.
END REPEAT.
EXECUTE.

Figure 8-2
Two variables set to the same constant value

The two variables assigned to the stand-in variable v are assigned the value 99.

If the variables don’t already exist, they are created.

Example

You could also assign different values to each variable by using two stand-in variables:
one that specifies the variables and one that specifies the corresponding values.

* do_repeat2.sps.
***create some sample data***.
DATA LIST LIST /var1 var3 id var2.
BEGIN DATA
3 3 3 3
2 2 2 2
END DATA.



146

Chapter 8

***real job starts here***.
DO REPEAT v=var1 TO var2 /val=1 3 5 7.
- COMPUTE v=val.
END REPEAT PRINT.
EXECUTE.

Figure 8-3
Different value assigned to each variable

The COMPUTE command inside the structure is repeated four times, and each
value of the stand-in variable v is associated with the corresponding value of the
variable val.

The PRINT keyword displays the generated commands in the log item in the
Viewer.

Figure 8-4
Commands generated by DO REPEAT displayed in the log



147

Conditional Processing, Looping, and Repeating

ALL Keyword and Error Handling

You can use the keyword ALL to set the stand-in variable to all variables in the active
dataset; however, since not all variables are created equal, actions that are valid for
some variables may not be valid for others, resulting in errors. For example, some
functions are valid only for numeric variables, and other functions are valid only for
string variables.

You can suppress the display of error messages with the command SET ERRORS =

NONE, which can be useful if you know your command syntax will create a certain
number of harmless error conditions for which the error messages are mostly noise.
This does not, however, tell the program to ignore error conditions; it merely prevents
error messages from being displayed in the output. This distinction is important for
command syntax run via an INCLUDE command, which will terminate on the first error
encountered regardless of the setting for displaying error messages.

Vectors
Vectors are a convenient way to sequentially refer to consecutive variables in the active
dataset. For example, if age, sex, and salary are three consecutive numeric variables
in the data file, we can define a vector called VectorVar for those three variables. We
can then refer to these three variables as VectorVar(1), VectorVar(2), and VectorVar(3).
This is often used in LOOP structures but can also be used without a LOOP.

Example

You can use the MAX function to find the highest value among a specified set of
variables. But what if you also want to know which variable has that value—and if
more than one variable has that value, how many variables have that value? Using
VECTOR and LOOP, you can get the information you want.

*vectors.sps.

***create some sample data***.
DATA LIST FREE

/FirstVar SecondVar ThirdVar FourthVar FifthVar.
BEGIN DATA
1 2 3 4 5
10 9 8 7 6
1 4 4 4 2
END DATA.

***real job starts here***.



148

Chapter 8

COMPUTE MaxValue=MAX(FirstVar TO FifthVar).
COMPUTE MaxCount=0.

VECTOR VectorVar=FirstVar TO FifthVar.
LOOP #cnt=5 to 1 BY -1.
- DO IF MaxValue=VectorVar(#cnt).
- COMPUTE MaxVar=#cnt.
- COMPUTE MaxCount=MaxCount+1.
- END IF.
END LOOP.
EXECUTE.

For each case, the MAX function in the first COMPUTE command sets the variable
MaxValue to the maximum value within the inclusive range of variables from
FirstVar to FifthVar. In this example, that happens to be five variables.

The second COMPUTE command initializes the variable MaxCount to 0. This is the
variable that will contain the count of variables with the maximum value.

The VECTOR command defines a vector in which VectorVar(1) = FirstVar,
VectorVar(2) = the next variable in the file order, ..., VectorVar(5) = FifthVar. Note:
Unlike some other programming languages, vectors in SPSS start at 1, not 0.

The LOOP structure defines a loop that will be repeated five times, decreasing
the value of the temporary variable #cnt by 1 for each loop. On the first loop,
VectorVar(#cnt) equals VectorVar(5), which equals FifthVar; on the last loop, it
will equal VectorVar(1), which equals FirstVar.

If the value of the current variable equals the value of MaxValue, then the value of
MaxVar is set to the current loop number represented by #cnt, and MaxCount is
incremented by 1.

The final value of MaxVar represents the position of the first variable in file order
that contains the maximum value, and MaxCount is the number of variables that
have that value. (LOOP #cnt = 1 TO 5 would set MaxVar to the position of the
last variable with the maximum value.)

The vector exists only until the next EXECUTE command or procedure that reads
the data.



149

Conditional Processing, Looping, and Repeating

Figure 8-5
Highest value across variables identified with VECTOR and LOOP

Creating Variables with VECTOR

You can use the short form of the VECTOR command to create multiple new variables.
The short form is VECTOR followed by a variable name prefix and, in parentheses, the
number of variables to create. For example:

VECTOR newvar(100).

will create 100 new variables, named newvar1, newvar2, ..., newvar100.

Disappearing Vectors

Vectors have a short lifespan; a vector lasts only until the next command that reads
the data, such as a statistical procedure or the EXECUTE command. This can lead to
problems under some circumstances, particularly when you are testing and debugging
a command file. When you are creating and debugging long, complex command
syntax jobs, it is often useful to insert EXECUTE commands at various stages to check
intermediate results. Unfortunately, this kills any defined vectors that might be needed
for subsequent commands, making it necessary to redefine the vector(s). However,
redefining the vectors sometimes requires special consideration.

* vectors_lifespan.sps.

GET FILE='c:\examples\data\employee data.sav'.
VECTOR vec(5).
LOOP #cnt=1 TO 5.



150

Chapter 8

- COMPUTE vec(#cnt)=UNIFORM(1).
END LOOP.
EXECUTE.

*Vector vec no longer exists; so this will cause an error.
LOOP #cnt=1 TO 5.
- COMPUTE vec(#cnt)=vec(#cnt)*10.
END LOOP.

*This also causes error because variables vec1 - vec5 now exist.
VECTOR vec(5).
LOOP #cnt=1 TO 5.
- COMPUTE vec(#cnt)=vec(#cnt)*10.
END LOOP.

* This redefines vector without error.
VECTOR vec=vec1 TO vec5.
LOOP #cnt=1 TO 5.
- COMPUTE vec(#cnt)=vec(#cnt)*10.
END LOOP.
EXECUTE.

The first VECTOR command uses the short form of the command to create five
new variables as well as a vector named vec containing those five variable names:
vec1 to vec5.

The LOOP assigns a random number to each variable of the vector.

EXECUTE completes the process of assigning the random numbers to the new
variables (transformation commands like COMPUTE aren’t run until the next
command that reads the data). Under normal circumstances, this may not be
necessary at this point. However, you might do this when debugging a job to
make sure that the correct values are assigned. At this point, the five variables
defined by the VECTOR command exist in the active dataset, but the vector that
defined them is gone.

Since the vector vec no longer exists, the attempt to use the vector in the subsequent
LOOP will cause an error.

Attempting to redefine the vector in the same way it was originally defined will
also cause an error, since the short form will attempt to create new variables using
the names of existing variables.

VECTOR vec=vec1 to vec5 redefines the vector to contain the same series
of variable names as before without generating any errors, because this form of
the command defines a vector that consists of a range of contiguous variables
that already exist in the active dataset.



151

Conditional Processing, Looping, and Repeating

Loop Structures

The LOOP-END LOOP structure performs repeated transformations specified by the
commands within the loop until it reaches a specified cutoff. The cutoff can be
determined in a number of ways:

*loop1.sps.
*create sample data, 4 vars = 0.
DATA LIST FREE /var1 var2 var3 var4 var5.
BEGIN DATA
0 0 0 0 0
END DATA.
***Loops start here***.
*Loop that repeats until MXLOOPS value reached.
SET MXLOOPS=10.
LOOP.
- COMPUTE var1=var1+1.
END LOOP.
*Loop that repeats 9 times, based on indexing clause.
LOOP #I = 1 to 9.
- COMPUTE var2=var2+1.
END LOOP.
*Loop while condition not encountered.
LOOP IF (var3 < 8).
- COMPUTE var3=var3+1.
END LOOP.
*Loop until condition encountered.
LOOP.
- COMPUTE var4=var4+1.
END LOOP IF (var4 >= 7).
*Loop until BREAK condition.
LOOP.
- DO IF (var5 < 6).
- COMPUTE var5=var5+1.
- ELSE.
- BREAK.
- END IF.
END LOOP.
EXECUTE.

An unconditional loop with no indexing clause will repeat until it reaches the value
specified on the SET MXLOOPS command. The default value is 40.

LOOP #I=1 to 9 specifies an indexing clause that will repeat the loop nine
times, incrementing the value of #I by 1 for each loop. LOOP #tempvar=1 to
10 BY 2 would repeat five times, incrementing the value of #tempvar by 2 for
each loop.



152

Chapter 8

LOOP IF continues as long as the specified condition is not encountered. This
corresponds to the programming concept of “do while.”

END LOOP IF continues until the specified condition is encountered. This
corresponds to the programming concept of “do until.”

A BREAK command in a loop ends the loop. Since BREAK is unconditional, it
is typically used only inside of conditional structures in the loop, such as DO
IF-END IF.

Indexing Clauses

The indexing clause limits the number of iterations for a loop by specifying the
number of times the program should execute commands within the loop structure. The
indexing clause is specified on the LOOP command and includes an indexing variable
followed by initial and terminal values.

The indexing variable can do far more than simply define the number of iterations.
The current value of the indexing variable can be used in transformations and
conditional statements within the loop structure. So it is often useful to define indexing
clauses that:

Use the BY keyword to increment the value of the indexing variable by some value
other than the default of 1, as in: LOOP #i = 1 TO 100 BY 5.

Define an indexing variable that decreases in value for each iteration, as in: LOOP
#j = 100 TO 1 BY -1.

Loops that use an indexing clause are not constrained by the MXLOOPS setting. An
indexing clause that defines 1,000 iterations will be iterated 1,000 times even if the
MXLOOPS setting is only 40.

The loop structure described in “Vectors” uses an indexing variable that decreases
for each iteration. The loop structure described in “Using XSAVE in a Loop to Build a
Data File” has an indexing clause that uses an arithmetic function to define the ending
value of the index. Both examples use the current value of the indexing variable in
transformations in the loop structure.



153

Conditional Processing, Looping, and Repeating

Nested Loops

You can nest loops inside of other loops. A nested loop is run for every iteration of
the parent loop. For example, a parent loop that defines 5 iterations and a nested loop
that defines 10 iterations will result in a total of 50 iterations for the nested loop (10
times for each iteration of the parent loop).

Example

Many statistical tests rely on assumptions of normal distributions and the Central
Limit Theorem, which basically states that even if the distribution of the population
is not normal, repeated random samples of a sufficiently large size will yield a
distribution of sample means that is normal.

We can use an input program and nested loops to demonstrate the validity of the
Central Limit Theorem. For this example, we’ll assume that a sample size of 100 is
“sufficiently large.”

*loop_nested.sps.
NEW FILE.
SET SEED 987987987.
INPUT PROGRAM.
- VECTOR UniformVar(100).
- *parent loop creates cases.
- LOOP #I=1 TO 100.
- *nested loop creates values for each variable in each case.
- LOOP #J=1 to 100.
- COMPUTE UniformVar(#J)=UNIFORM(1000).
- END LOOP.
- END CASE.
- END LOOP.
- END FILE.
END INPUT PROGRAM.
COMPUTE UniformMean=mean(UniformVar1 TO UniformVar100).
COMPUTE NormalVar=500+NORMAL(100).
FREQUENCIES

VARIABLES=NormalVar UniformVar1 UniformMean
/FORMAT=NOTABLE
/HISTOGRAM NORMAL
/ORDER = ANALYSIS.

The first two commands simply create a new, empty active dataset and set the
random number seed to consistently duplicate the same results.

INPUT PROGRAM-END INPUT PROGRAM is used to generate cases in the data file.



154

Chapter 8

The VECTOR command creates a vector called UniformVar, and it also creates 100
variables, named UniformVar1, UniformVar2, ..., UniformVar100.

The outer LOOP creates 100 cases via the END CASE command, which creates a
new case for each iteration of the loop. END CASE is part of the input program and
can be used only within an INPUT PROGRAM-END INPUT PROGRAM structure.

For each case created by the outer loop, the nested LOOP creates values for the
100 variables. For each iteration, the value of #J increments by one, setting
UniformVar(#J) to UniformVar(1), then UniformVar(2), and so forth, which in turn
stands for UniformVar1, UniformVar2, and so forth.

The UNIFORM function assigns each variable a random value based on a uniform
distribution. This is repeated for all 100 cases, resulting in 100 cases and 100
variables, all containing random values based on a uniform distribution. So the
distribution of values within each variable and across variables within each case is
non-normal.

The MEAN function creates a variable that represents the mean value across all
variables for each case. This is essentially equivalent to the distribution of sample
means for 100 random samples, each containing 100 cases.

For comparison purposes, we use the NORMAL function to create a variable with
a normal distribution.

Finally, we create histograms to compare the distributions of the variable based
on a normal distribution (NormalVar), one of the variables based on a uniform
distribution (UniformVar1), and the variable that represents the distribution of
sample means (UniformMean).



155

Conditional Processing, Looping, and Repeating

Figure 8-6
Demonstrating the Central Limit Theorem with nested loops

As you can see from the histograms, the distribution of sample means represented by
UniformMean is approximately normal, despite the fact that it was generated from
samples with uniform distributions similar to UniformVar1.

Conditional Loops

You can define conditional loop processing with LOOP IF or END LOOP IF. The
main difference between the two is that, given equivalent conditions, END LOOP IF

will produce one more iteration of the loop than LOOP IF.

Example

*loop_if1.sps.
DATA LIST FREE /X.
BEGIN DATA
1 2 3 4 5
END DATA.
SET MXLOOPS=10.
COMPUTE Y=0.
LOOP IF (X~=3).
- COMPUTE Y=Y+1.
END LOOP.
COMPUTE Z=0.



156

Chapter 8

LOOP.
- COMPUTE Z=Z+1.
END LOOP IF (X=3).
EXECUTE.

LOOP IF (X~=3) does nothing when X is 3; so the value of Y is not incremented
and remains 0 for that case.

END LOOP IF (X=3) will iterate once when X is 3, incrementing Z by 1, yielding
a value of 1.

For all other cases, the loop is iterated the number of times specified on SET
MXLOOPS, yielding a value of 10 for both Y and Z.

Using XSAVE in a Loop to Build a Data File

You can use XSAVE in a loop structure to build a data file, writing one case at a time to
the new data file.

Example

This example constructs a data file of casewise data from aggregated data. The
aggregated data file comes from a table that reports the number of males and females
by age. Since SPSS works best with raw (casewise) data, we need to “disaggregate”
the data, creating one case for each person and a new variable that indicates gender
for each case.

In addition to using XSAVE to build the new data file, this example also uses a
function in the indexing clause to define the ending index value.

*loop_xsave.sps.
DATA LIST FREE
/Age Female Male.

BEGIN DATA
20 2 2
21 0 0
22 1 4
23 3 0
24 0 1
END DATA.
LOOP #cnt=1 to SUM(Female, Male).
- COMPUTE Gender = (#cnt > Female).
- XSAVE OUTFILE="c:\temp\tempdata.sav"

/KEEP Age Gender.
END LOOP.



157

Conditional Processing, Looping, and Repeating

EXECUTE.
GET FILE='c:\temp\tempdata.sav'.
COMPUTE IdVar=$CASENUM.
FORMATS Age Gender (F2.0) IdVar(N3).
EXECUTE.

DATA LIST is used to read the aggregated, tabulated data. For example, the first
“case” (record) represents two females and two males aged 20.

The SUM function in the LOOP indexing clause defines the number of loop iterations
for each case. For example, for the first case, the function returns a value of 4; so
the loop will iterate four times.

On the first two iterations, the value of the indexing variable #cnt is not greater
than the number of females; so the new variable Gender takes a value of 0 for each
of those iterations, and the values 20 and 0 (for Age and Gender) are saved to
the new data file for the first two cases.

During the subsequent two iterations, the comparison #cnt > Female is true,
returning a value of 1, and the next two variables are saved to the new data file
with the values of 20 and 1.

This process is repeated for each case in the aggregated data file. The second case
results in no loop iterations and consequently no cases in the new data file; the
third case produces five new cases, and so on.

Since XSAVE is a transformation, we need an EXECUTE command after the loop
ends to finish the process of saving the new data file.

The FORMATS command specifies a format of N3 for the ID variable, displaying
leading zeros for one- and two-digit values. GET FILE opens the data file that we
created, and the subsequent COMPUTE command creates a sequential ID variable
based on the system variable $CASENUM, which is the current row number in
the data file.



158

Chapter 8

Figure 8-7
Tabular source data and new “disaggregated” data file

Calculations Affected by Low Default MXLOOPS Setting

A LOOP with an end point defined by a logical condition (for example, END LOOP IF

varx > 100) will loop until the defined end condition is reached or until the number
of loops specified on SET MXLOOPS is reached, whichever comes first. The default
value of MXLOOPS is only 40, which may produce undesirable results or errors that
can be hard to locate for looping structures that require a larger number of loops to
function properly.

Example

This example generates a data file with 1,000 cases, where each case contains the
number of random numbers—uniformly distributed between 0 and 1—that have to
be drawn to obtain a number less than 0.001. Under normal circumstance, you would
expect the mean value to be around 1,000 (randomly drawing numbers between 0 and
1 will result in a value of less than 0.001 roughly once every thousand numbers), but
the low default value of MXLOOPS would give you misleading results.

* set_mxloops.sps.

SET MXLOOPS=40. /* Default value. Change to 10000 and compare.
SET SEED=02051242.
INPUT PROGRAM.
LOOP cnt=1 TO 1000. /*LOOP with indexing clause not affected by MXLOOPS.
- COMPUTE n=0.



159

Conditional Processing, Looping, and Repeating

- LOOP.
- COMPUTE n=n+1.
- END LOOP IF UNIFORM(1)<.001. /*Loops limited by MXLOOPS setting.
- END CASE.
END LOOP.
END FILE.
END INPUT PROGRAM.

DESCRIPTIVES VARIABLES=n
/STATISTICS=MEAN MIN MAX .

All of the commands are syntactically valid and produce no warnings or error
messages.

SET MXLOOPS=40 simply sets the maximum number of loops to the default value.

The seed is set so that the same result occurs each time the commands are run.

The outer LOOP generates 1,000 cases. Since it uses an indexing clause (cnt=1
TO 1000), it is unconstrained by the MXLOOPS setting.

The nested LOOP is supposed to iterate until it produces a random value of less
than 0.001.

Each case includes the case number (cnt) and n, where n is the number of times we
had to draw a random number before getting a number less than 0.001. There is 1
chance in 1,000 of getting such a number.

The DESCRIPTIVES command shows that the mean value of n is only 39.2—far
below the expected mean of close to 1,000. Looking at the maximum value gives
you a hint as to why the mean is so low. The maximum is only 40, which is
remarkably close to the mean of 39.2; and if you look at the values in the Data
Editor, you can see that nearly all of the values of n are 40, because the MXLOOPS
limit of 40 was almost always reached before a random uniform value of 0.001
was obtained.

If you change the MXLOOPS setting to 10,000 (SET MXLOOPS=10000), however,
you get very different results. The mean is now 980.9, fairly close to the expected
mean of 1,000.



160

Chapter 8

Figure 8-8
Different results with different MXLOOPS settings



Chapter

9
Exporting Data and Results

You can export and save both data and results in a variety of formats for use by other
applications, including:

Save data in SAS, Stata, Excel, and text format.

Write data to a database.

Export results in HTML, Word, Excel, and text format.

Save results in XML and SPSS data file (.sav) format.

Output Management System

The Output Management System provides the ability to automatically write selected
categories of output to different output files in different formats. Formats include:

SPSS data file format (SAV). Output that would be displayed in pivot tables in the Viewer
can be written out in the form of an SPSS data file, making it possible to use output as
input for subsequent commands.

XML. Tables, text output, and even many charts can be written out in XML format.

HTML. Tables and text output can be written out in HTML format. Standard (not
interactive) charts and tree model diagrams (Classification Tree option) can be
included as image files.

Text. Tables and text output can be written out as tab-delimited or space-separated text.

The examples provided here are also described in the SPSS Help system, and they
barely scratch the surface of what is possible with the OMS command. For a detailed
description of the OMS command and related commands (OMSEND, OMSINFO, and
OMSLOG), see the SPSS Command Syntax Reference.

161



162

Chapter 9

Using Output as Input with OMS

Using the OMS command, you can save pivot table output to SPSS-format data files
and then use that output as input in subsequent commands or sessions. This can be
useful for many purposes. This section provides examples of two possible ways
to use output as input:

Generate a table of group summary statistics (percentiles) not available with the
AGGREGATE command and then merge those values into the original data file.

Draw repeated random samples with replacement from a data file, calculate
regression coefficients for each sample, save the coefficient values in a data file,
and then calculate confidence intervals for the coefficients (bootstrapping).

The command syntax files for these examples are installed in the tutorial\sample_files
folder of the SPSS installation folder.

Adding Group Percentile Values to a Data File

Using the AGGREGATE command, you can compute various group summary statistics
and then include those values in the active dataset as new variables. For example, you
could compute mean, minimum, and maximum income by job category and then
include those values in the dataset. Some summary statistics, however, are not available
with the AGGREGATE command. This example uses OMS to write a table of group
percentiles to a data file and then merges the data in that file with the original data file.

The command syntax used in this example is oms_percentiles.sps, located in the
tutorial\sample_files folder of the SPSS installation folder.

***oms_percentiles.sps***.
GET

FILE='c:\Program Files\spss\Employee data.sav'.
PRESERVE.
SET TVARS NAMES TNUMBERS VALUES.

***split file by job category to get group percentiles.
SORT CASES BY jobcat.
SPLIT FILE LAYERED BY jobcat.

DATASET DECLARE tempdata.

OMS
/SELECT TABLES
/IF COMMANDS=['Frequencies'] SUBTYPES=['Statistics']
/DESTINATION FORMAT=SAV
OUTFILE=tempdata

/COLUMNS SEQUENCE=[L1 R2].



163

Exporting Data and Results

FREQUENCIES
VARIABLES=salary
/FORMAT=NOTABLE
/PERCENTILES= 25 50 75.

OMSEND.

***restore previous SET settings.
RESTORE.

MATCH FILES FILE=*
/TABLE=tempdata
/rename (Var1=jobcat)
/BY jobcat

/DROP command_ TO salary_Missing.
EXECUTE.

The PRESERVE command saves your current SET command specifications.

SET TVARS NAMES TNUMBERS VALUES specifies that variable names and data
values, not variable or value labels, should be displayed in tables. Using variable
names instead of labels is not technically necessary in this example, but it makes
the new variable names constructed from column labels somewhat easier to work
with. Using data values instead of value labels, however, is required to make this
example work properly because we will use the job category values in the two
files to merge them together.

SORT CASES and SPLIT FILE are used to divide the data into groups by job
category (jobcat). The LAYERED keyword specifies that results for each split-file
group should be displayed in the same table rather than in separate tables.

The OMS command will select all statistics tables from subsequent FREQUENCIES
commands and write the tables to an SPSS-format data file.

The COLUMNS subcommand will put the first layer dimension element and the
second row dimension element in the columns.

The FREQUENCIES command produces a statistics table that contains the 25th,
50th, and 75th percentile values for salary. Since split-file processing is on, the
table will contain separate percentile values for each job category.



164

Chapter 9

Figure 9-1
Default and pivoted statistics table

In the statistics table, the variable salary is the only layer dimension element;
so, the L1 specification in the OMS COLUMNS subcommand will put salary in
the column dimension.

The table statistics are the second (inner) row dimension element in the table; so,
the R2 specification in the OMS COLUMNS subcommand will put the statistics in
the column dimension, nested under the variable salary.

The data values 1, 2, and 3 are used for the categories of the variable jobcat
instead of the descriptive text value labels because of the previous SET command
specifications.

OMSEND ends all active OMS commands. Without this, we could not access the data
file temp.sav in the subsequent MATCH FILES command because the file would
still be open for writing.



165

Exporting Data and Results

Figure 9-2
Data file created from pivoted table

The MATCH FILES command merges the contents of the data file created from
the statistics table with the original data file. New variables from the data file
created by OMS will be added to the original data file.

FILE=* specifies the current active dataset, which is still the original data file.

TABLE='c:\temp\temp.sav' identifies the data file created by OMS as a table
lookup file. A table lookup file is a file in which data for each “case” can be
applied to multiple cases in the other data file(s). In this example, the table lookup
file contains only three cases—one for each job category.

In the data file created by OMS, the variable that contains the job category values is
named Var1, but in the original data file, the variable is named jobcat. RENAME
(Var1=jobcat) compensates for this discrepancy in the variable names.

BY jobcat merges the two files together by values of the variable jobcat. The
three cases in the table lookup file will be merged with every case in the original
data file with the same value for jobcat (also known as Var1 in the table lookup
file).

Since we don’t want the three table identifier variables to be included automatically
in every data file created by OMS or the two variables that contain the information
on valid and missing cases, we use the DROP subcommand to omit these from the
merged data file.

The end result is three new variables containing the 25th, 50th, and 75th percentile
salary values for each job category.



166

Chapter 9

Figure 9-3
Percentiles added to original data file

Bootstrapping with OMS

Bootstrapping is a method for estimating population parameters by repeatedly
“resampling” the same sample—computing some test statistic on each sample and
then looking at the distribution of the test statistic over all the samples. Cases are
selected randomly, with replacement, from the original sample to create each new
sample. Typically, each new sample has the same number of cases as the original
sample—however, some cases may be randomly selected multiple times and others
not at all. In this example, we:

Use a macro to draw repeated random samples with replacement.

Run the REGRESSION command on each sample.

Use the OMS command to save the regression coefficients tables to a data file.

Produce histograms of the coefficient distributions and a table of confidence
intervals, using the data file created from the coefficient tables.

The command syntax file used in this example is oms_bootstrapping.sps, located in the
tutorial\sample_files folder of the SPSS installation folder.



167

Exporting Data and Results

OMS Commands to Create a Data File of Coefficients

Although the command syntax file oms_bootstrapping.sps may seem long and/or
complicated, the OMS commands that create the data file of sample regression
coefficients are really very short and simple:

PRESERVE.
SET TVARS NAMES.
DATASET DECLARE bootstrap_example.
OMS /DESTINATION VIEWER=NO /TAG='suppressall'.
OMS

/SELECT TABLES
/IF COMMANDS=['Regression'] SUBTYPES=['Coefficients']
/DESTINATION FORMAT=SAV OUTFILE='bootstrap_example'
/COLUMNS DIMNAMES=['Variables' 'Statistics']
/TAG='reg_coeff'.

The PRESERVE command saves your current SET command specifications,
and SET TVARS NAMES specifies that variable names—not labels—should be
displayed in tables. Since variable names in data files created by OMS are based on
table column labels, using variable names instead of labels in tables tends to result
in shorter, less cumbersome variable names.

DATASET DECLARE defines a dataset name that will then be used in the
REGRESSION command.

The first OMS command prevents subsequent output from being displayed in the
Viewer until an OMSEND is encountered. This is not technically necessary, but if
you are drawing hundreds or thousands of samples, you probably don’t want to see
the output of the corresponding hundreds or thousands of REGRESSION commands.

The second OMS command will select coefficients tables from subsequent
REGRESSION commands.

All of the selected tables will be saved in a dataset named bootstrap_example. This
dataset will be available for the rest of the current session but will be deleted
automatically at the end of the session unless explicitly saved. The contents of this
dataset will be displayed in a separate Data Editor window.

The COLUMNS subcommand specifies that both the ‘Variables’ and ‘Statistics’
dimension elements of each table should appear in the columns. Since a regression
coefficients table is a simple two-dimensional table with ‘Variables’ in the rows
and ‘Statistics’ in the columns, if both dimensions appear in the columns, then
there will be only one row (case) in the generated data file for each table. This
is equivalent to pivoting the table in the Viewer so that both ‘Variables’ and
‘Statistics’ are displayed in the column dimension.



168

Chapter 9

Figure 9-4
Variables dimension element pivoted into column dimension

Sampling with Replacement and Regression Macro

The most complicated part of the OMS bootstrapping example has nothing to do with
the OMS command. A macro routine is used to generate the samples and run the
REGRESSION commands. Only the basic functionality of the macro is discussed here.

DEFINE regression_bootstrap (samples=!TOKENS(1)
/depvar=!TOKENS(1)
/indvars=!CMDEND)

COMPUTE dummyvar=1.
AGGREGATE

/OUTFILE=* MODE=ADDVARIABLES
/BREAK=dummyvar
/filesize=N.

!DO !other=1 !TO !samples
SET SEED RANDOM.
WEIGHT OFF.
FILTER OFF.
DO IF $casenum=1.
- COMPUTE #samplesize=filesize.
- COMPUTE #filesize=filesize.
END IF.



169

Exporting Data and Results

DO IF (#samplesize>0 and #filesize>0).
- COMPUTE sampleWeight=rv.binom(#samplesize, 1/#filesize).
- COMPUTE #samplesize=#samplesize-sampleWeight.
- COMPUTE #filesize=#filesize-1.
ELSE.
- COMPUTE sampleWeight=0.
END IF.
WEIGHT BY sampleWeight.
FILTER BY sampleWeight.
REGRESSION

/STATISTICS COEFF
/DEPENDENT !depvar
/METHOD=ENTER !indvars.

!DOEND
!ENDDEFINE.

GET FILE='D:\Program Files\SPSS\Employee data.sav'.

regression_bootstrap
samples=100
depvar=salary
indvars=salbegin jobtime.

A macro named regression_bootstrap is defined. It is designed to work with
arguments similar to SPSS subcommands and keywords.

Based on the user-specified number of samples, dependent variable, and
independent variable, the macro will draw repeated random samples with
replacement and run the REGRESSION command on each sample.

The samples are generated by randomly selecting cases with replacement and
assigning weight values based on how many times each case is selected. If a case
has a value of 1 for sampleWeight, it will be treated like one case. If it has a value
of 2, it will be treated like two cases, and so on. If a case has a value of 0 for
sampleWeight, it will not be included in the analysis.

The REGRESSION command is then run on each weighted sample.

The macro is invoked by using the macro name like a command. In this example,
we generate 100 samples from the employee data.sav file. You can substitute any
file, number of samples, and/or analysis variables.

Ending the OMS Requests

Before you can use the generated dataset, you need to end the OMS request that created
it, because the dataset remains open for writing until you end the OMS request. At that
point, the basic job of creating the dataset of sample coefficients is complete, but
we’ve added some histograms and a table that displays the 2.5th and 97.5th percentiles



170

Chapter 9

values of the bootstrapped coefficient values, which indicate the 95% confidence
intervals of the coefficients.

OMSEND.
DATASET ACTIVATE bootstrap_example.
FREQUENCIES

VARIABLES=salbegin_B salbegin_Beta jobtime_B jobtime_Beta
/FORMAT NOTABLE
/PERCENTILES= 2.5 97.5
/HISTOGRAM NORMAL.

RESTORE.

OMSEND without any additional specifications ends all active OMS requests. In
this example, there were two: one to suppress all Viewer output and one to save
regression coefficients in a data file. If you don’t end both OMS requests, either you
won’t be able to open the data file or you won’t see any results of your subsequent
analysis.

The job ends with a RESTORE command that restores your previous SET
specifications.



171

Exporting Data and Results

Figure 9-5
95% confidence interval (2.5th and 97.5th percentiles) and coefficient histograms

Transforming OXML with XSLT

Using the OMS command, you can route output to OXML, which is XML that conforms
to the SPSS Output XML schema. This section provides a few basic examples of
using XSLT to transform OXML.

These examples assume some basic understanding of XML and XSLT. If you have
not used XML or XSLT before, this is not the place to start. There are numerous
books and Internet resources that can help you get started.



172

Chapter 9

All of the XSLT stylesheets presented here are installed in the tutorial\sample_files
folder of the SPSS installation folder.

The SPSS Output XML schema is documented in SPSSOutputXML_schema.htm,
located in the help\main folder of the SPSS installation folder.

OMS Namespace

Output XML produced by OMS contains a namespace declaration:

xmlns="http://xml.spss.com/spss/oms"

In order for XSLT stylesheets to work properly with OXML, the XSLT stylesheets
must contain a similar namespace declaration that also defines a prefix that is used to
identify that namespace in the stylesheet. For example:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0" xmlns:oms="http://xml.spss.com/spss/oms">

This defines “oms” as the prefix that identifies the namespace; therefore, all of the
XPath expressions that refer to OXML elements by name must use “oms:” as a prefix
to the element name references. All of the examples presented here use the “oms:”
prefix, but you could define and use a different prefix.

“Pushing” Content from an XML File

In the “push” approach, the structure and order of elements in the transformed results
are usually defined by the source XML file. In the case of OXML, the structure of the
XML mimics the nested tree structure of the Viewer outline, and we can construct a
very simple XSLT transformation to reproduce the outline structure.

This example generates the outline in HTML, but it could just as easily generate a
simple text file. The XSLT stylesheet is oms_simple_outline_example.xsl.



173

Exporting Data and Results

Figure 9-6
Viewer outline

Figure 9-7
XSLT stylesheet oms_simple_outline_example.xsl

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0"

xmlns:oms="http://xml.spss.com/spss/oms">

<xsl:template match="/">
<HTML>
<HEAD>
<TITLE>Outline Pane</TITLE>

</HEAD>
<BODY>
<br/>Output
<xsl:apply-templates/>

</BODY>
</HTML>

</xsl:template>

<xsl:template match="oms:command|oms:heading">



174

Chapter 9

<xsl:call-template name="displayoutline"/>
<xsl:apply-templates/>

</xsl:template>
<xsl:template match="oms:textBlock|oms:pageTitle|oms:pivotTable|oms:chartTitle">
<xsl:call-template name="displayoutline"/>

</xsl:template>

<!--indent based on number of ancestors:
two spaces for each ancestor-->
<xsl:template name="displayoutline">
<br/>
<xsl:for-each select="ancestor::*">
<xsl:text>&#160;&#160;</xsl:text>

</xsl:for-each>
<xsl:value-of select="@text"/>
<xsl:if test="not(@text)">
<!--no text attribute, must be page title-->
<xsl:text>Page Title</xsl:text>

</xsl:if>
</xsl:template>

</xsl:stylesheet>

xmlns:oms="http://xml.spss.com/spss/oms" defines “oms” as the prefix that
identifies the namespace; so, all element names in XPath expressions need to
include the prefix “oms:”.

The stylesheet consists mostly of two <template match> specifications that cover
each type of element that can appear in the outline—command, heading, textBlock,
pageTitle, pivotTable, and chartTitle.

Both of those templates call another template that determines how far to indent
the text attribute value for the element.

The command and heading elements can have other outline items nested under
them, so the template for those two elements also includes <xsl:apply-templates/>
to apply the template for the other outline items.

The template that determines the outline indentation simply counts the number of
“ancestors” the element has, which indicates its nesting level, and then inserts
two spaces (&#160; is a “nonbreaking” space in HTML) before the value of the
text attribute value.

<xsl:if test="not(@text)"> selects <pageTitle> elements because this is the only
specified element that doesn’t have a text attribute. This occurs wherever there is a
TITLE command in the SPSS command file. In the Viewer, it inserts a page break
for printed output and then inserts the specified page title on each subsequent
printed page. In OXML, the <pageTitle> element has no attributes; so, we use
<xsl:text> to insert the text “Page Title” as it appears in the Viewer outline.



175

Exporting Data and Results

Viewer Outline “Titles”

You may notice that there are a number of “Title” entries in the Viewer outline that
don’t appear in the generated HTML. These should not be confused with page titles.
There is no corresponding element in OXML because the actual “title” of each output
block (the text object selected in the Viewer if you the click the “Title” entry in the
Viewer outline) is exactly the same as the text of the entry directly above the “Title”
in the outline, which is contained in the text attribute of the corresponding command
or heading element in OXML.

“Pulling” Content from an XML File

In the “pull” approach, the structure and order of elements in the source XML file
may not be relevant for the transformed results. Instead, the source XML is treated
like a data repository from which selected pieces of information are extracted, and the
structure of the transformed results is defined by the XSLT stylesheet.

The “pull” approach typically uses <xsl:for-each> to select and extract information
from the XML.

Simple xsl:for-each “Pull” Example

This example uses <xsl:for-each> to “pull” selected information out of OXML output
and create customized HTML tables.

Although you can easily generate HTML output using DESTINATION

FORMAT=HTML on the OMS command, you have very little control over the HTML
generated beyond the specific object types included in the HTML file. Using OXML,
however, you can create customized tables. This example:

Selects only frequency tables in the OXML file.

Displays only valid (nonmissing) values.

Displays only the “Frequency” and “Valid Percent” columns.

Replaces the default column labels with “Count” and “Percent”.

The XSLT stylesheet used in this example is oms_simple_frequency_tables.xsl.

Note: This stylesheet is not designed to work with frequency tables generated with
layered split-file processing.



176

Chapter 9

Figure 9-8
Frequencies pivot tables in Viewer

Figure 9-9
Customized HTML frequency tables

Figure 9-10
XSLT stylesheet: oms_simple_frequency_tables.xsl

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"



177

Exporting Data and Results

version="1.0" xmlns:oms="http://xml.spss.com/spss/oms">
<!--enclose everything in a template, starting at the root node-->
<xsl:template match="/">
<HTML>
<HEAD>
<TITLE>Modified Frequency Tables</TITLE>
</HEAD>
<BODY>
<!--Find all Frequency Tables-->
<xsl:for-each select="//oms:pivotTable[@subType='Frequencies']">
<xsl:for-each select="oms:dimension[@axis='row']">
<h3>
<xsl:value-of select="@text"/>

</h3>
</xsl:for-each>
<!--create the HTML table-->
<table border="1">
<tbody align="char" char="." charoff="1">
<tr>
<!--
table header row; you could extract headings from
the XML but in this example we're using different header text
-->
<th>Category</th><th>Count</th><th>Percent</th>

</tr>
<!--find the columns of the pivot table-->
<xsl:for-each select="descendant::oms:dimension[@axis='column']">

<!--select only valid, skip missing-->
<xsl:if test="ancestor::oms:group[@text='Valid']">
<tr>
<td>

<xsl:choose>
<xsl:when test="not((parent::*)[@text='Total'])">
<xsl:value-of select="parent::*/@text"/>

</xsl:when>
<xsl:when test="((parent::*)[@text='Total'])">
<b><xsl:value-of select="parent::*/@text"/></b>

</xsl:when>
</xsl:choose>

</td>
<td>
<xsl:value-of select="oms:category[@text='Frequency']/oms:cell/@text"/>

</td>
<td>
<xsl:value-of select="oms:category[@text='Valid Percent']/oms:cell/@text"/>

</td>
</tr>

</xsl:if>
</xsl:for-each>

</tbody>
</table>
<!--Don't forget possible footnotes for split files-->
<xsl:if test="descendant::*/oms:note">
<p><xsl:value-of select="descendant::*/oms:note/@text"/></p>
</xsl:if>
</xsl:for-each>
</BODY>
</HTML>
</xsl:template>
</xsl:stylesheet>



178

Chapter 9

xmlns:oms="http://xml.spss.com/spss/oms" defines “oms” as the prefix that
identifies the namespace; so, all element names in XPath expressions need to
include the prefix “oms:”.

The XSLT primarily consists of a series of nested <xsl:for-each> statements, each
drilling down to a different element and attribute of the table.

<xsl:for-each select="//oms:pivotTable[@subType='Frequencies']"> selects all
tables of the subtype ‘Frequencies’.

<xsl:for-each select="oms:dimension[@axis='row']"> selects the row dimension
of each table.

<xsl:for-each select="descendant::oms:dimension[@axis='column']"> selects the
column elements from each row. OXML represents tables row by row, so column
elements are nested within row elements.

<xsl:if test="ancestor::oms:group[@text='Valid']"> selects only the section of the
table that contains valid, nonmissing values. If there are no missing values reported
in the table, this will include the entire table. This is the first of several XSLT
specifications in this example that rely on attribute values that differ for different
output languages. If you don’t need solutions that work for multiple output
languages, this is often the simplest, most direct way to select certain elements.
Many times, however, there are alternatives that don’t rely on localized text strings.
For more information, see “Advanced xsl:for-each “Pull” Example” on p. 179.

<xsl:when test="not((parent::*)[@text='Total'])"> selects column elements that aren’t
in the ‘Total’ row. Once again, this selection relies on localized text, and the only
reason we make the distinction between total and nontotal rows in this example
is to make the row label ‘Total’ bold.

<xsl:value-of select="oms:category[@text='Frequency']/oms:cell/@text"/> gets the
content of the cell in the ‘Frequency’ column of each row.

<xsl:value-of select="oms:category[@text='Valid Percent']/oms:cell/@text"/> gets
the content of the cell in the ‘Valid Percent’ column of each row. Both this and
the previous code for obtaining the value from the ‘Frequency’ column rely on
localized text.



179

Exporting Data and Results

Figure 9-11
XPath expressions for selected frequency table elements

Advanced xsl:for-each “Pull” Example

In addition to selecting and displaying only selected parts of each frequency table
in HTML format, this example:

Doesn’t rely on any localized text.

Always shows both variable names and labels.

Always shows both values and value labels.

Rounds decimal values to integers.

The XSLT stylesheet used in this example is customized_frequency_tables.xsl.

Note: This stylesheet is not designed to work with frequency tables generated with
layered split-file processing.



180

Chapter 9

Figure 9-12
Customized HTML with value rounded to integers

The simple example contained a single XSLT <template> element. This stylesheet
contains multiple templates:

A “main” template that selects the table elements from the OXML

A template that defines the display of variable names and labels

A template that defines the display of values and value labels

A template that defines the display of cell values as rounded integers

The following sections explain the different templates used in the stylesheet.

Main Template for Advanced xsl:for-each Example

Since this XSLT stylesheet produces tables with essentially the same structure as
the simple <xsl:for-each> example, the main template is similar to the one used in
the simple example.

Figure 9-13
Main template of customized_frequency_tables.xsl

<?xml version="1.0" encoding="UTF-8"?>



181

Exporting Data and Results

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0" xmlns:oms="http://xml.spss.com/spss/oms">

<!--enclose everything in a template, starting at the root node-->
<xsl:template match="/">
<HTML>
<HEAD>
<TITLE>Modified Frequency Tables</TITLE>
</HEAD>
<BODY>
<xsl:for-each select="//oms:pivotTable[@subType='Frequencies']">
<xsl:for-each select="oms:dimension[@axis='row']">
<h3>
<xsl:call-template name="showVarInfo"/>

</h3>
</xsl:for-each>
<!--create the HTML table-->
<table border="1">
<tbody align="char" char="." charoff="1">
<tr> <th>Category</th><th>Count</th><th>Percent</th>
</tr>
<xsl:for-each select="descendant::oms:dimension[@axis='column']">

<xsl:if test="oms:category[3]">
<tr>
<td>

<xsl:choose>
<xsl:when test="parent::*/@varName">
<xsl:call-template name="showValueInfo"/>

</xsl:when>
<xsl:when test="not(parent::*/@varName)">

<b><xsl:value-of select="parent::*/@text"/></b>
</xsl:when>

</xsl:choose>
</td>
<td>
<xsl:apply-templates select="oms:category[1]/oms:cell/@number"/>

</td>
<td>
<xsl:apply-templates select="oms:category[3]/oms:cell/@number"/>

</td>
</tr>

</xsl:if>
</xsl:for-each>

</tbody>
</table>
<xsl:if test="descendant::*/oms:note">
<p><xsl:value-of select="descendant::*/oms:note/@text"/></p>
</xsl:if>
</xsl:for-each>
</BODY>
</HTML>
</xsl:template>



182

Chapter 9

This template is very similar to the one for the simple example. The main differences
are:

<xsl:call-template name="showVarInfo"/> calls another template to determine what
to show for the table title instead of simply using the text attribute of the row
dimension (oms:dimension[@axis='row']). For more information, see “Controlling
Variable and Value Label Display” on p. 183.

<xsl:if test="oms:category[3]"> selects only the data in the ‘Valid’ section of the
table instead of <xsl:if test="ancestor::oms:group[@text='Valid']">. The positional
argument used in this example doesn’t rely on localized text. It also relies on the
fact that the basic structure of a frequency table is always the same—and the fact
that OXML does not include elements for empty cells. Since the ‘Missing’ section
of a frequency table contains values only in the first two columns, there are no
oms:category[3] column elements in the ‘Missing’ section; so, the test condition is
not met for the ‘Missing’ rows. For more information, see “Positional Arguments
versus Localized Text Attributes” on p. 184.

<xsl:when test="parent::*/@varName"> selects the nontotal rows instead of
<xsl:when test="not((parent::*)[@text='Total'])">. Column elements in the nontotal
rows in a frequency table contain a varName attribute that identifies the variable,
whereas column elements in total rows do not. So, this selects nontotal rows
without relying on localized text.

<xsl:call-template name="showValueInfo"/> calls another template to determine
what to show for the row labels instead of <xsl:value-of select="parent::*/@text"/>.
For more information, see “Controlling Variable and Value Label Display” on p.
183.

<xsl:apply-templates select="oms:category[1]/oms:cell/@number"/>
selects the value in the ‘Frequency’ column instead of <xsl:value-of
select="oms:category[@text='Frequency']/oms:cell/@text"/>. A positional
argument is used instead of localized text (the ‘Frequency’ column is always the
first column in a frequency table), and a template is applied to determine how to
display the value in the cell. Percentage values are handled the same way, using
oms:category[3] to select the values from the ‘Valid Percent’ column. For more
information, see “Controlling Decimal Display” on p. 184.



183

Exporting Data and Results

Controlling Variable and Value Label Display

The display of variable names and/or labels and values and/or value labels in pivot
tables is determined by the current settings for SET TVARS and SET TNUMBERS—and
the corresponding text attributes in the OXML also reflect those settings. The system
default is to display labels when they exist and names or values when they don’t. The
settings can be changed to always show names or values and never show labels or
always show both.

The XSLT templates showVarInfo and showValueInfo are designed to ignore those
settings and always show both names or values and labels (if present).

Figure 9-14
showVarInfo and showValueInfo templates

<!--display both variable names and labels-->
<xsl:template name="showVarInfo">
<p>
<xsl:text>Variable Name: </xsl:text>
<xsl:value-of select="@varName"/>
</p>
<xsl:if test="@label">
<p>
<xsl:text>Variable Label: </xsl:text>
<xsl:value-of select="@label"/>

</p>
</xsl:if>

</xsl:template>

<!--display both values and value labels-->
<xsl:template name="showValueInfo">
<xsl:choose>
<!--Numeric vars have a number attribute,
string vars have a string attribute -->
<xsl:when test="parent::*/@number">
<xsl:value-of select="parent::*/@number"/>

</xsl:when>
<xsl:when test="parent::*/@string">
<xsl:value-of select="parent::*/@string"/>

</xsl:when>
</xsl:choose>
<xsl:if test="parent::*/@label">

<xsl:text>: </xsl:text>
<xsl:value-of select="parent::*/@label"/>

</xsl:if>
</xsl:template>

<xsl:text>Variable Name: </xsl:text> and <xsl:value-of select="@varName"/>
display the text “Variable Name:” followed by the variable name.

<xsl:if test="@label"> checks to see if the variable has a defined label.



184

Chapter 9

If the variable has a defined label, <xsl:text>Variable Label: </xsl:text> and
<xsl:value-of select="@label"/> display the text “Variable Label:” followed by the
defined variable label.

Values and value labels are handled in a similar fashion, except instead of a
varName attribute, values will have either a number attribute or a string attribute.

Controlling Decimal Display

The text attribute of a <cell> element in OXML displays numeric values with the
default number of decimal positions for the particular type of cell value. For most
table types, there is little or no control over the default number of decimals displayed
in cell values in pivot tables, but OXML can provide some flexibility not available in
default pivot table display.

In this example, the cell values are rounded to integers, but we could just as easily
display five or six or more decimal positions because the number attribute may contain
up to 15 significant digits.

Figure 9-15
Rounding cell values

<!--round decimal cell values to integers-->
<xsl:template match="@number">
<xsl:value-of select="format-number(.,'#')"/>

</xsl:template>

This template is invoked whenever <apply-templates select="..."/> contains a
reference to a number attribute.

<xsl:value-of select="format-number(.,'#')"/> specifies that the selected values
should be rounded to integers with no decimal positions.

Positional Arguments versus Localized Text Attributes

Whenever possible, it is always best to avoid XPath expressions that rely on localized
text (text that differs for different output languages) or positional arguments. You will
probably find, however, that this is not always possible.



185

Exporting Data and Results

Localized Text Attributes

Most table elements contain a text attribute that contains the information as it
would appear in a pivot table in the current output language. For example, the
column in a frequency table that contains counts is labeled Frequency in English but
Frecuencia in Spanish. If you do not need XSLT that will work in multiple languages,
XPath expressions that select elements based on text attributes (for example,
@text='Frequency') will often provide a simple, reliable solution.

Positional Arguments

Instead of localized text attributes, for many table types you can use positional
arguments that are not affected by output language. For example, in a frequency table
the column that contains counts is always the first column, so a positional argument
of category[1] at the appropriate level of the tree structure should always select
information in the column that contains counts.

In some table types, however, the elements in the table and order of elements in the
table can vary. For example, the order of statistics in the columns or rows of table
subtype “Report” generated by the MEANS command is determined by the specified
order of the statistics on the CELLS subcommand. In fact, two tables of this type may
not even display the same statistics at all. So, category[1] might select the category
that contains mean values in one table, median values in another table, and nothing at
all in another table.

Layered Split-File Processing

Layered split-file processing can alter the basic structure of tables that you might
otherwise assume have a fixed default structure. For example, a standard frequency
table has only one row dimension (dimension axis="row"), but a frequency table of
the same variable when layered split-file processing is in effect will have multiple
row dimensions, and the total number of dimensions—and row label columns in the
table—depends on the number of split-file variables and unique split-file values.



186

Chapter 9

Figure 9-16
Standard and layered frequencies tables

Exporting Data to Other Applications and Formats
You can save the contents of the active dataset in a variety of formats, including SAS,
Stata, and Excel. You can also write data to a database.

Saving Data in SAS Format

With the SAVE TRANSLATE command, you can save data as SAS v6, SAS v7, and SAS
transport files. A SAS transport file is a sequential file written in SAS transport format
and can be read by SAS with the XPORT engine and PROC COPY or the DATA step.

Certain characters that are allowed in SPSS variable names are not valid in SAS,
such as @, #, and $. These illegal characters are replaced with an underscore when
the data are exported.



187

Exporting Data and Results

SPSS variable labels containing more than 40 characters are truncated when
exported to a SAS v6 file.

Where they exist, SPSS variable labels are mapped to the SAS variable labels.
If no variable label exists in the SPSS data, the variable name is mapped to the
SAS variable label.

SAS allows only one value for missing, whereas SPSS allows the definition of
numerous missing values. As a result, all missing values in SPSS are mapped to a
single missing value in the SAS file.

Example

*save_as_SAS.sps.
GET FILE='c:\examples\data\employee data.sav'.
SAVE TRANSLATE OUTFILE='c:\examples\data\sas7datafile.sas7bdat'

/TYPE=SAS /VERSION=7 /PLATFORM=WINDOWS
/VALFILE='c:\examples\data\sas7datafile_labels.sas' .

The active data file will be saved as a SAS v7 data file.

PLATFORM=WINDOWS creates a data file that can be read by SAS running on
Windows operating systems. For UNIX operating systems, use PLATFORM=UNIX.
For platform-independent data files, use VERSION=X to create a SAS transport file.

The VALFILE subcommand saves defined value labels in a SAS format file.
Unlike SPSS, SAS variable and value labels are not saved with the data; they are
stored in a separate file.

For more information, see the SAVE TRANSLATE command in the SPSS Command
Syntax Reference.

Saving Data in Stata Format

To save data in Stata format, use the SAVE TRANSLATE command with /TYPE=STATA.

Example

*save_as_Stata.sps.
GET FILE='c:\examples\data\employee data.sav'.
SAVE TRANSLATE

OUTFILE='c:\examples\data\statadata.dta'
/TYPE=STATA
/VERSION=8

           /EDITION=SE.



188

Chapter 9

Data can be written in Stata 5–8 format and in both Intercooled and SE format
(versions 7 and 8 only).

Data files that are saved in Stata 5 format can be read by Stata 4.

The first 80 bytes of variable labels are saved as Stata variable labels.

For numeric variables, the first 80 bytes of value labels are saved as Stata value
labels. For string variables, value labels are dropped.

For versions 7 and 8, the first 32 bytes of variable names in case-sensitive form
are saved as Stata variable names. For earlier versions, the first eight bytes of
variable names are saved as Stata variable names. Any characters other than
letters, numbers, and underscores are converted to underscores.

SPSS variable names that contain multibyte characters (for example, Japanese or
Chinese characters) are converted to variables names of the general form Vnnn,
where nnn is an integer value.

For versions 5–6 and Intercooled versions 7–8, the first 80 bytes of string values
are saved. For Stata SE 7–8, the first 244 bytes of string values are saved.

For versions 5–6 and Intercooled versions 7–8, only the first 2,047 variables are
saved. For Stata SE 7–8, only the first 32,767 variables are saved.

SPSS variable type Stata variable type Stata data format

Numeric Numeric g

Comma Numeric g

Dot Numeric g

Scientific Notation Numeric g

Date, Datetime Numeric D_m_Y

Time, DTime Numeric g (number of seconds)

Wkday Numeric g (1–7)

Moyr Numeric g (1–12)

Dollar Numeric g

Custom Currency Numeric g

String String s



189

Exporting Data and Results

Saving Data in Excel Format

To save data in Excel format, use the SAVE TRANSLATE command with /TYPE=XLS.

Example

*save_as_excel.sps.
GET FILE='c:\examples\data\employee data.sav'.
SAVE TRANSLATE OUTFILE='c:\examples\data\exceldata.xls'

/TYPE=XLS /VERSION=8
/FIELDNAMES
/CELLS=VALUES .

VERSION=8 saves the data file in Excel 97–2000 format.

FIELDNAMES includes the variable names as the first row of the Excel file.

CELLS=VALUES saves the actual data values. If you want to save descriptive value
labels instead, use CELLS=LABELS.

Writing Data Back to a Database

SAVE TRANSLATE can also write data back to an existing database. You can create
new database tables or replace or modify existing ones. As with reading database
tables, writing back to a database uses ODBC, so you need to have the necessary
ODBC database drivers installed.

The command syntax for writing back to a database is fairly simple—but, just like
reading data from a database, you need the somewhat cryptic CONNECT string. The
easiest way to get the CONNECT string is to use the Database Wizard to read data
from the database, and then paste the generated command syntax at the last step of
the wizard.

For more information on ODBC drivers and CONNECT strings, see “Getting Data
from Databases” on p. 23 in Chapter 3.

Example

This example reads a table from an Access database, creates a subset of cases and
variables, and then writes a new table to the database containing that subset of data.

*write_to_access.sps.
GET DATA /TYPE=ODBC /CONNECT=
'DSN=MS Access Database;DBQ=C:\examples\data\dm_demo.mdb;'+



190

Chapter 9

'DriverId=25;FIL=MS Access;MaxBufferSize=2048;PageTimeout=5;'
/SQL = 'SELECT * FROM CombinedTable'.

EXECUTE.
DELETE VARIABLES Income TO Response.
N OF CASES 50.
SAVE TRANSLATE

/TYPE=ODBC /CONNECT=
'DSN=MS Access Database;DBQ=C:\examples\data\dm_demo.mdb;'+
'DriverId=25;FIL=MS Access;MaxBufferSize=2048;PageTimeout=5;'

/TABLE='CombinedSubset'
/REPLACE
/UNSELECTED=RETAIN
/MAP.

The CONNECT string in the SAVE TRANSLATE command is exactly the same as the
one used in the GET DATA command, and that CONNECT string was obtained by
pasting command syntax from the Database Wizard. TYPE=ODBC indicates that
the data will be saved in a database. The database must already exist; you cannot
use SAVE TRANSLATE to create a database.

The TABLE subcommand specifies the name of the database table. If the table does
not already exist in the database, it will be added to the database.

If a table with the name specified on the TABLE subcommand already exists, the
REPLACE subcommand specifies that this table should be overwritten.

You can use APPEND instead of REPLACE to append data to an existing table, but
there must be an exact match between variable and field names and corresponding
data types. The table can contain more fields than variables being written to the
table, but every variable must have a matching field in the database table.

UNSELECTED=RETAIN specifies that any filtered, but not deleted, cases should
be included in the table. This is the default. To exclude filtered cases, use
UNSELECTED=DELETE.

The MAP subcommand provides a summary of the data written to the database. In
this example, we deleted all but the first three variables and first 50 cases before
writing back to the database, and the output displayed by the MAP subcommand
indicates that three variables and 50 cases were written to the database.

Data written to CombinedSubset.
3 variables and 50 cases written.
Variable: ID Type: Number Width: 11 Dec: 0
Variable: AGE Type: Number Width: 8 Dec: 2
Variable: MARITALSTATUS Type: Number Width: 8 Dec: 2



191

Exporting Data and Results

Example

The SQL subcommand provides the ability to issue any SQL directives that are needed
in the target database. For example, the APPEND subcommand only appends rows to an
existing table. If you want to append columns to an existing table, you could do so
using SQL directives with the SQL subcommand.

*append_to_table.sps.
GET DATA /TYPE=ODBC /CONNECT=
'DSN=MS Access Database;DBQ=C:\examples\data\dm_demo.mdb;'+
'DriverId=25;FIL=MS Access;MaxBufferSize=2048;PageTimeout=5;'
/SQL = 'SELECT * FROM CombinedTable'.

CACHE.
AUTORECODE VARIABLES=income

/INTO income_rank
/DESCENDING.

SAVE TRANSLATE /TYPE=ODBC
/CONNECT=
'DSN=MS Access Database;DBQ=C:\examples\data\dm_demo.mdb;'
'DriverId=25;FIL=MS Access;MaxBufferSize=2048;PageTimeout=5;'
/TABLE = 'NewColumn'
/KEEP ID income_rank
/REPLACE
/SQL='ALTER TABLE CombinedTable ADD COLUMN income_rank REAL'
/SQL='UPDATE CombinedTable INNER JOIN NewColumn ON ' +
'CombinedTable.ID=NewColumn.ID SET ' +
'CombinedTable.income_rank=NewColumn.income_rank'.

The TABLE, KEEP, and REPLACE subcommands create or replace a table named
NewColumn that contains two variables: a key variable (ID) and a calculated
variable (income_rank).

The first SQL subcommand, specified on a single line, adds a column to an existing
table that will contain values of the computed variable income_rank. At this point,
all we have done is create an empty column in the existing database table, and the
fact that both database tables and the active dataset use the same name for that
column is merely a convenience for simplicity and clarity.

The second SQL subcommand, specified on multiple lines with the quoted strings
concatenated together with plus signs, adds the income_rank values from the
new table to the existing table, matching rows (cases) based on the value of the
key variable ID.

The end result is that an existing table is modified to include a new column containing
the values of the computed variable.



192

Chapter 9

Saving Data in Text Format

You use the SAVE TRANSLATE command to save data as tab-delimited text or the
WRITE command to save data as fixed-width text. See the SPSS Command Syntax
Reference for more information.

Exporting Results to Word, Excel, and PowerPoint

The OMS command (discussed earlier in this chapter) is the method of choice for
exporting results in XML or text format, but OMS is not appropriate if you want to
export results to Microsoft Word, Excel, or PowerPoint.

To export results to Word, Excel, or PowerPoint, you need to use the Export facility
in the Viewer. From the Viewer window menus, choose:
File

Export

For detailed examples, see the tutorials installed with SPSS. From the menus, choose:
Help

Tutorial

In the Tutorial table of contents, choose:
Working with Output

Using the Viewer
Using Results in Other Applications



Chapter

10
Scoring Data with Predictive
Models

Introduction

The process of applying a predictive model to a set of data is referred to as scoring the
data. A typical example is credit scoring, where a credit application is rated for risk
based on various aspects of the applicant and the loan in question.

SPSS, Clementine, and AnswerTree have procedures for building predictive models
such as regression, clustering, tree, and neural network models. Once a model has
been built, the model specifications can be saved as an XML file containing all of
the information necessary to reconstruct the model. The SPSS Server product then
provides the means to read an XML model file and apply the model to a data file.

Scoring is treated as a transformation of the data. The model is expressed internally
as a set of numeric transformations to be applied to a given set of variables—the
predictor variables specified in the model—in order to obtain a predicted result. In
this sense, the process of scoring data with a given model is inherently the same as
applying any function, such as a square root function, to a set of data.

It is often the case that you need to apply transformations to your original data
before building your model and that the same transformations will have to be applied
to the data you need to score. You can apply those transformations first, followed by
the transformations that score the data. The whole process, starting from raw data to
predicted results, is then seen as a set of data transformations. The advantage to this
unified approach is that all of the transformations can be processed with a single data
pass. In fact, you can score the same data file with multiple models—each providing its
own set of results—with just a single data pass. For large data files, this can translate
into a substantial savings in computing time.

193



194

Chapter 10

Scoring is available only with SPSS Server and is a task that requires the use of
SPSS command syntax. The necessary commands can be entered into a Syntax Editor
window and run interactively by users working in distributed analysis mode. The set
of commands can also be saved in a command syntax file and submitted to the SPSS
Batch Facility, a separate executable version of SPSS provided with SPSS Server. For
large data files, you will probably want to make use of the SPSS Batch Facility. For
information about distributed analysis mode, see the SPSS Base User’s Guide. For
information about using the SPSS Batch Facility, see the SPSS Batch Facility User’s
Guide, provided as a PDF document on the SPSS Server product CD.

Basics of Scoring Data
Once a predictive model has been built and the model specifications have been saved
as an XML file, the model can be used to score data.

Command Syntax for Scoring

Scoring requires the use of command syntax. The sample syntax in this example
contains all of the essential elements needed to score data.

*Get data to be scored.
GET FILE='\samples\data\sample.sav'.

*Perform data transformations on input data.
COMPUTE var_new = ln(var).

*Read in the XML model file.
MODEL HANDLE NAME=cluster_mod FILE='\samples\data\cmod.xml'.

*Apply the model to the data.
COMPUTE PredRes = ApplyModel(cluster_mod,'predict').

*Read the data.
EXECUTE.

The command used to get the input data depends on the form of the data. For
example, if your data are in SPSS format, you’ll use the GET FILE command,
but if your data are stored in a database, you’ll use the GET DATA command.
For details, see the SPSS Command Syntax Reference, accessible as a PDF file
from the Help menu. In the current example, the data are in SPSS format and



195

Scoring Data with Predictive Models

are assumed to be in a file named sample.sav, located in the samples\data folder
on the computer on which SPSS Server is installed. SPSS Server expects that
file paths, specified as part of command syntax, are relative to the computer on
which SPSS Server is installed.

In order to build the best model, you might need to transform one of the variables,
such as with a log transformation (as in this example). Assuming that your input
data have the same structure as that used to build your model, you would need
to perform this same transformation on the input data. This is accomplished by
including the necessary transformation command(s) as part of the command
syntax used for scoring.

The MODEL HANDLE command is used to read the XML file containing the model
specifications. It caches the model specifications and associates a unique name
with the cached model. In the current example, the model is assigned the name
cluster_mod, and the model specifications are assumed to be in a file named
cmod.xml, located in the samples\data folder on the server computer.

The ApplyModel function is used with the COMPUTE command to apply the
model. ApplyModel has two arguments: the first identifies the model using the
name defined on the MODEL HANDLE command, and the second identifies the
type of result to be returned, such as the model prediction (as in this example) or
the probability associated with the prediction. For details on the ApplyModel
function, including the types of results available for each model type, see “Scoring
Expressions” in the “Transformation Expressions” section of the SPSS Command
Syntax Reference.

In this example, the EXECUTE command is used to read the data. The use of
EXECUTE is not necessary if you have subsequent commands that read the data,
such as SAVE, or any statistical or charting procedure.

After scoring, the active dataset contains the results of the predictions—in this case,
the new variable PredRes. If your data were read in from a database, you’ll probably
want to write the results back to the database. This is accomplished with the SAVE
TRANSLATE command (for details, see the SPSS Command Syntax Reference).



196

Chapter 10

Mapping Model Variables to SPSS Variables

You can map any or all of the variables specified in the XML model file to different
variables in the current active dataset. By default, the model is applied to variables in
the current active dataset with the same names as the variables in the model file. The
MAP subcommand of a MODEL HANDLE command is used to map variables.

MODEL HANDLE NAME=cluster_mod FILE='C:\samples\data\cmod.xml'
/MAP VARIABLES=Age_Group Log_Amount MODELVARIABLES=AgeGrp LAmt.

In this example, the model variables AgeGrp and LAmt are mapped to the variables
Age_Group and Log_Amount in the active dataset.

Missing Values in Scoring

A missing value in the context of scoring refers to one of the following: a predictor
variable with no value (system-missing for numeric variables, a null string for string
variables), a value defined as user-missing in the model, or a value for a categorical
predictor variable that is not one of the categories defined in the model. Other than
the case where a predictor variable has no value, the identification of a missing value
is based on the specifications in the XML model file, not those from the variable
properties in the active dataset. This means that values defined as user-missing in the
active dataset but not as user-missing in the XML model file will be treated as valid
data during scoring.

By default, the scoring facility attempts to substitute a meaningful value for a
missing value. The precise way in which this is done is model dependent. For details,
see the MODEL HANDLE command in the SPSS Command Syntax Reference. If a
substitute value cannot be supplied, the value for the variable in question is set to
system-missing. Cases with values of system-missing, for any of the model’s predictor
variables, give rise to a result of system-missing for the model prediction.

You have the option of suppressing value substitution and simply treating all
missing values as system-missing. Treatment of missing values is controlled through
the value of the MISSING keyword on the OPTIONS subcommand of a MODEL
HANDLE command.

MODEL HANDLE NAME=cluster_mod FILE='C:\samples\data\cmod.xml'
/OPTIONS MISSING=SYSMIS.



197

Scoring Data with Predictive Models

In this example, the keyword MISSING has the value SYSMIS. Missing values
encountered during scoring will then be treated as system-missing. The associated
cases will be assigned a value of system-missing for a predicted result.

Using Predictive Modeling to Identify Potential Customers

A marketing company is tasked with running a promotional campaign for a suite
of products. The company has already targeted a regional base of customers and
has sufficient information to build a model for predicting customer response to the
campaign. The model is then to be applied to a much larger set of potential customers
in order to determine those most likely to make purchases as a result of the promotion.

This example makes use of the information in the following data files:
customers_model.sav contains the data from the individuals who have already been
targeted; customers_new.sav contains the list of potentially new customers. The
command syntax file scoring.sps contains all of the commands needed to score the
sample data. All sample files for this example are located in the tutorial\sample_files
folder of the SPSS installation folder. If you are working in distributed analysis mode
(not required for this example), you’ll need to copy customers_model.sav to the
computer on which SPSS Server is installed.

Building and Saving Predictive Models

The first task is to build a model for predicting whether or not a potential customer
will respond to a promotional campaign. The result of the prediction, then, is either
yes or no. In the language of predictive models, the prediction is referred to as the
target variable. In the present case, the target variable is categorical since there are
only two possible values of the result.

Choosing the best predictive model is a subject all unto itself. The goal here is
simply to lead you through the steps to build a model and save the model specifications
as an XML file. Two models that are appropriate for categorical target variables,
a multinomial logistic regression model, and a classification tree model, will be
considered.



198

Chapter 10

Transforming Your Data

In an ideal situation, your raw data are perfectly suitable for the type of analysis you
want to perform. Unfortunately, this is rarely the case. Preliminary analysis may
reveal inconvenient coding schemes for categorical variables or the need to apply
numeric transformations to scale variables. Any transformations applied to the data
used to build the model will also usually need to be applied to the data that are to be
scored. This is easily accomplished by including the necessary commands along with
the others needed for scoring.

E If you haven’t already done so, open customers_model.sav.

The method used to retrieve your data depends on the form of the data. In the common
case that your data are in a database, you’ll want to make use of the built-in features
for reading from databases. For details, see the SPSS Base User’s Guide.

Figure 10-1
Data Editor window

The Data Editor window should now be populated with the sample data that you’ll use
to build your models. Each case represents the information for a single individual. The
data include demographic information, a summary of purchasing history, and whether
or not each individual responded to the regional campaign.

For convenience, the necessary data transformations have already been performed.
The data to be scored, customers_new.sav, have not been transformed. The
transformations included in scoring.sps will accomplish that.



199

Scoring Data with Predictive Models

The command syntax needed to carry out the data transformations has been included
in the section labeled Data Transformations in the file scoring.sps.

/**** Data Transformations ****.

* Recode Age into a categorical variable.
RECODE Age

( MISSING = COPY )
( LO THRU 37 =1 )
( LO THRU 43 =2 )
( LO THRU 49 =3 )
( LO THRU HI = 4 ) INTO Age_Group.

IF MISSING(Age) Age_Group = -9.

* The Amount distribution is skewed, so take the log of it.
COMPUTE Log_Amount = ln(Amount).

The existing values of Age are consolidated into five categories and stored in the
new variable Age_Group.

A histogram of Amount would show that the distribution is skewed. This is
something that is often cured by a log transformation, as shown here.



200

Chapter 10

Building and Saving a Multinomial Logistic Regression Model

To build a Multinomial Logistic Regression model (requires the Regression Models
option):

E From the menus, choose:
Analyze

Regression
Multinomial Logistic...

Figure 10-2
Multinomial Logistic Regression dialog box

E Select Response for the dependent variable.

E Select Has_Child, Has_Broadband, Gender, Income_Group, and Age_Group for the
factors.

E Select Recency, Frequency, and Log_Amount for the covariates.

E Click Save.



201

Scoring Data with Predictive Models

Figure 10-3
Multinomial Logistic Regression Save dialog box

E Click the Browse button in the Multinomial Logistic Regression Save dialog box.

This will take you to a standard dialog box for saving a file.

E Navigate to the directory in which you would like to save the XML model file, enter a
filename, and click Save.

The path to your chosen file should now appear in the Multinomial Logistic Regression
Save dialog box. You’ll eventually include this path as part of the command syntax file
for scoring. For purposes of scoring, paths in syntax files are interpreted relative to the
computer on which SPSS Server is installed.

E Click Continue in the Multinomial Logistic Regression Save dialog box.

E Click OK in the Multinomial Logistic Regression dialog box.

This results in creating the model and saving the model specifications as an XML file.
For convenience, the command syntax for creating this model and saving the model
specifications is included in the section labeled Multinomial logistic regression model
in the file scoring_models.sps.



202

Chapter 10

Building and Saving a Classification Tree Model

The Tree procedure, available in the Classification Tree option (not included with the
Base system), provides a number of methods for growing a classification tree. The
default method is CHAID and is sufficient for the present purposes.

To build a CHAID tree model:

E From the menus, choose:
Analyze

Classify
Tree...

Figure 10-4
Classification Tree dialog box

E Select Response for the dependent variable.

E Select Has_Child, Has_Broadband, Gender, Income_Group, Age_Group,
Log_Amount, Recency, and Frequency for the independent variables.

E Click Save.



203

Scoring Data with Predictive Models

Figure 10-5
Classification Tree Save dialog box

E Select Training Sample in the Export Tree Model as XML group.

E Click the Browse button.

This will take you to a standard dialog box for saving a file.

E Navigate to the directory in which you would like to save the XML model file, enter a
filename, and click Save.

The path to your chosen file should now appear in the Classification Tree Save dialog
box.

E Click Continue in the Classification Tree Save dialog box.

E Click OK in the Classification Tree dialog box.

This results in creating the model and saving the model specifications as an XML file.
For convenience, the command syntax for creating this model and saving the model
specifications is included in the section labeled Classification tree model in the file
scoring_models.sps.



204

Chapter 10

Commands for Scoring Your Data

Now that you’ve built and exported your models, you’re ready to score your data.

Opening a Model File—The Model Handle Command

Before a model can be applied to a data file, the model specifications must be read into
the current working session. This is accomplished with the MODEL HANDLE command.

Command syntax for the necessary MODEL HANDLE commands can be found in the
section labeled Read in the XML model files in the file scoring.sps.

/**** Read in the XML model files ****.

MODEL HANDLE NAME=mregression FILE='file specification'.
MODEL HANDLE NAME=tree FILE='file specification'.

Each model read into memory is required to have a unique name referred to as
the model handle name.

In this example, the name mregression is used for the multinomial logistic
regression model and the name tree is used for the classification tree model. A
separate MODEL HANDLE command is required for each XML model file.

Before scoring the sample data, you’ll need to replace the 'file
specification' strings in the MODEL HANDLE commands with the paths
to your XML model files (include quotes in the file specification). Paths are
interpreted relative to the computer on which SPSS Server is installed.

For further details on the MODEL HANDLE command, see the SPSS Command Syntax
Reference, accessible as a PDF file from the Help menu.

Applying the Models—The ApplyModel and StrApplyModel Functions

Once a model file has been successfully read with the MODEL HANDLE command,
you use the ApplyModel and/or the StrApplyModel functions to apply the model
to your data.

The command syntax for the ApplyModel function can be found in the section
labeled Apply the model to the data file in the file scoring.sps.

/**** Apply the model to the data file ****.



205

Scoring Data with Predictive Models

COMPUTE PredCatReg = ApplyModel(mregression,'predict').
COMPUTE PredCatTree = ApplyModel(tree,'predict').

The ApplyModel and StrApplyModel functions are used with the COMPUTE
command. ApplyModel returns results as numeric data. StrApplyModel
returns the same results but as character data. Unless you need results returned as
a string, you can simply use ApplyModel.

These functions have two arguments: the first identifies the model using the
model handle name defined on the MODEL HANDLE command (for example,
mregression), and the second identifies the type of result to be returned, such as
the model prediction or the probability associated with the prediction.

The string value 'predict' (include the quotes) indicates that ApplyModel
should return the predicted result—that is, whether an individual will respond to
the promotion. The new variables PredCatReg and PredCatTree store the predicted
results for the multinomial logistic regression and tree models, respectively. A
value of 1 means that an individual is predicted to make a purchase; otherwise, the
value is 0. The particular values 0 and 1 reflect the fact that the dependent variable,
Response (used in both models), takes on these values.

For further details on the ApplyModel and StrApplyModel functions, including
the types of results available for each model type, see “Scoring Expressions” in the
“Transformation Expressions” section of the SPSS Command Syntax Reference.

Including Post-Scoring Transformations

Since scoring is treated as a set of data transformations, you can include transformations
in your command syntax file that follow the ones for scoring—for example,
transformations used to compare the results of competing models—and cause them
to be processed in the same single data pass. For large data files, this can represent a
substantial savings in computing time.

As a simple example, consider computing the agreement between the predictions of
the two models used in this example. The necessary command syntax can be found in
the section labeled Compute comparison variable in the file scoring.sps.

* Compute comparison variable.
COMPUTE ModelsAgree = PredCatReg=PredCatTree.



206

Chapter 10

This COMPUTE command creates a comparison variable called ModelsAgree. It has
the value of 1 when the model predictions agree and 0 otherwise.

Getting Data and Saving Results

The command used to get the data to be scored depends on the form of the data. For
example, if your data are in SPSS format, you will use the GET FILE command, but if
your data are stored in a database, you will use the GET DATA command.

After scoring, the active dataset contains the results of the predictions—in this case,
the new variables PredCatReg, PredCatTree, and ModelsAgree. If your data were read
in from a database, you will probably want to write the results back to the database.
This is accomplished with the SAVE TRANSLATE command. For details on the GET
DATA and SAVE TRANSLATE commands, see the SPSS Command Syntax Reference.

The command syntax for getting the data for the current example can be found in
the section labeled Get data to be scored in the file scoring.sps.

/**** Get data to be scored ****.

GET FILE='file specification'.

The data to be scored are assumed to be in an SPSS-format file (customers_new.sav).
The GET FILE command is then used to read the data.

Before scoring the sample data, you’ll need to replace the 'file
specification' string in the GET FILE command with the path to
customers_new.sav (include quotes in the file specification). Paths are interpreted
relative to the computer on which SPSS Server is installed.

The command syntax for saving the results for the current example can be found in the
section labeled Save sample results in the file scoring.sps.

/**** Save sample results ****.

SAVE OUTFILE='file specification'.



207

Scoring Data with Predictive Models

The SAVE command can be used to save the results as an SPSS-format data file. In
the case of writing results to a database table, the SAVE TRANSLATE command
would be used.

Before scoring the sample data, you will need to replace the 'file
specification' string in the SAVE command with a valid path to a new file
(include quotes in the file specification). Paths are interpreted relative to the
computer on which SPSS Server is installed. You’ll probably want to include
a filetype of .sav for the file so that SPSS will recognize it. If the file doesn’t
exist, the SAVE command will create it for you. If the file already exists, it will be
overwritten.

The saved file will contain the results of the scoring process and will be composed of
the original file, customers_new.sav, with the addition of the three new variables,
PredCatReg, PredCatTree, and ModelsAgree. You are now ready to learn how to
submit a command file to the SPSS Batch Facility.

Running Your Scoring Job Using the SPSS Batch Facility

The SPSS Batch Facility is intended for automated production, providing the ability
to run SPSS analyses without user intervention. It takes an SPSS syntax file, such as
the command syntax file that you have been studying, executes all of the commands
in the file, and writes output to the file that you specify. The output file contains a
listing of the command syntax that was processed, as well as any output specific to the
commands that were executed. In the case of scoring, this includes tables generated
from the MODEL HANDLE commands showing the details of the variables read from the
model files. This output is to be distinguished from the results of the ApplyModel
commands used to score the data. Those results are saved to the appropriate data
source with the SAVE or SAVE TRANSLATE command included in your syntax file.

The SPSS Batch Facility is invoked with the spssb command, run from a command
line on the computer on which SPSS Server is installed.

/** Command line for submitting a file to the SPSS Batch Facility **

spssb -f \jobs\scoring.sps -type text -out \jobs\score.txt



208

Chapter 10

The sample command in this example will run the command syntax file scoring.sps
and write text style output into score.txt.

All paths in this command line are relative to the computer on which SPSS Server
is installed.

Try scoring the data in customers_new.sav by submitting scoring.sps to the batch
facility. Of course, you’ll have to make sure that you’ve included valid paths for all of
the required files, as instructed above.



Part II:
Programming with SPSS and
Python





Chapter

11
Introduction

The SPSS-Python Integration Plug-In extends the SPSS command syntax language
with the full capabilities of the Python programming language. With this feature,
Python programs can access SPSS variable dictionary information, case data,
procedure output, and error codes from SPSS commands, and they can submit
command syntax to SPSS for processing. A wide variety of tasks can be accomplished
in a programmatic fashion with this technology.

Control the Flow of a Command Syntax Job

You can write Python programs to control the execution of syntax jobs, based on
variable properties, case data, procedure output, error codes, or conditions such as the
presence of specific files or environment variables. With this functionality, you can:

Conditionally run an SPSS command only when a particular variable exists in the
active dataset or the case data meet specified criteria.

Decide on a course of action if a command fails to produce a meaningful result,
such as an iterative process that doesn’t converge.

Determine whether to proceed with execution or halt a job if an error arises during
the execution of an SPSS command.

Dynamically Create and Submit SPSS Command Syntax

Python programs can dynamically construct SPSS command syntax and submit it to
SPSS for processing. This allows you to dynamically tailor command specifications to
the current variable dictionary, the case data in the active dataset, procedure output, or

211



212

Chapter 11

virtually any other information from the environment. For example, you can create a
Python program to:

Dynamically create a list of SPSS variables, from the active dataset, that have a
particular attribute, and use that list as the variable list for a given SPSS command.

Perform SPSS data management operations on a dynamically selected set of
files—for example, combine cases from all SPSS-format data files located in a
specified directory.

Apply Custom Algorithms to Your Data

Access to the case data in the active dataset allows you to use the power of Python to
perform custom calculations on your SPSS data. This opens up the possibility of using
the vast set of scientific programming libraries available for the Python language.

Server-Side Scripting

Python programs (sometimes referred to as scripts in the context used here) interacting
with SPSS execute on the computer that hosts the SPSS backend—which of course
is where SPSS command syntax is always executed. In local mode, these programs
execute on your local (desktop) computer, but in distributed mode, they execute on the
server computer—a fact that allows you to perform operations on the server that were
previously available only through client-side scripting on a Windows operating system.
In that regard, the SPSS-Python Integration Plug-In is available for both Windows and
UNIX-based operating systems.

Develop and Debug Code Using Third-Party IDEs That Drive SPSS

The SPSS-Python Integration Plug-In provides functionality to drive the SPSS backend
from any Python IDE (Integrated Development Environment) or any separate Python
process, like the Python interpreter. You can then develop and debug your code
with the Python IDE of your choice. IDEs typically include a rich set of tools for
creating and debugging software, such as editors that do code completion and syntax
highlighting and debuggers that allow you to step through your code and inspect
variable and attribute values. Once you’ve completed code development in an IDE,
you can incorporate it into an SPSS command syntax job or put it into production as a
job that drives SPSS from a Python process.



213

Introduction

Prerequisites

The SPSS-Python Integration Plug-In works with SPSS release 14.0.1 or later and
requires only SPSS Base. The plug-in is available, along with installation instructions,
from SPSS Developer Central at www.spss.com/devcentral.

The chapters that follow include hands-on examples of integrating Python with
SPSS command syntax and assume a basic working knowledge of Python, although
aspects of the Python language are discussed when deemed necessary. For help getting
started with the Python programming language, see the Python tutorial, available at
http://docs.python.org/tut/tut.html.

Note: SPSS is not the owner or licensor of the Python software. Any user of Python
must agree to the terms of the Python license agreement located on the Python Web
site. SPSS does not make any statement about the quality of the Python program.
SPSS fully disclaims all liability associated with your use of the Python program.

http://docs.python.org/tut/tut.html
http://docs.python.org/tut/tut.html




Chapter

12
Getting Started with Python
Programming in SPSS

Once you’ve installed the SPSS-Python Integration Plug-In, you have full access
to all of the functionality of the Python programming language from within BEGIN

PROGRAM-END PROGRAM program blocks in SPSS command syntax. The basic
structure is:

BEGIN PROGRAM.
Python statements
END PROGRAM.

Here’s the classic “Hello, world!” example in Python:

BEGIN PROGRAM.
print "Hello, world!"
END PROGRAM.

The example uses the Python print statement to write output to Python’s standard
output, which is directed to a log item in the SPSS Viewer, if a Viewer is available.

Figure 12-1
Output from BEGIN PROGRAM displayed in a log item

215



216

Chapter 12

Within a program block, Python is in control, so all statements must be valid Python
statements. Even though program blocks are part of SPSS command syntax, you can’t
include syntax commands as statements in a program block. For example,

BEGIN PROGRAM.
FREQUENCIES VARIABLES=var1, var2, var3.
END PROGRAM.

will generate an error because FREQUENCIES is not a Python command. Since the goal
of a program block is often to generate some statements that SPSS can understand,
there must be a way to specify SPSS commands within a program block. This is done
using a function from the spss Python module, as discussed in the topic “Submitting
Commands to SPSS” on p. 217.

The spss Python Module
The spss Python module is installed as part of the SPSS-Python Integration Plug-In
and contains a number of SPSS-specific functions that enable the process of using
Python programming features with SPSS command syntax.

The spss module provides functions to:

Build and run SPSS command syntax

Get information about data in the current SPSS session

Get data from the active dataset

Get output results

Create macro variables

Get error information

The functions in the module are accessed by including the Python statement import
spss as the first line in a program block, as in:

BEGIN PROGRAM.
import spss
spss.Submit("SHOW ALL.")
END PROGRAM.

You need to include the import spss statement only once in a given SPSS session.
Repeating an import statement in subsequent BEGIN PROGRAM blocks essentially
has no effect.



217

Getting Started with Python Programming in SPSS

As you’ll learn in the next topic, the Submit function shown above allows you to
send commands to SPSS for processing. The prefix spss in spss.Submit tells
Python that this function can be found in the spss module. For functions that are
commonly used, like Submit, you can omit the spss prefix by including the statement
from spss import <function name> before the first call to the function. For
example:

BEGIN PROGRAM.
import spss
from spss import Submit
Submit("SHOW ALL.")
END PROGRAM.

Many of the functions in the spss module are used in examples in the sections that
follow. Details for all of the functions in the spss module can be found in Appendix
A. A brief description for a particular function is also available using the Python help

function. For example, adding the statement help(spss.Submit) to a program
block results in the display of a brief description of the Submit function in a log
item in the Viewer.

Submitting Commands to SPSS
The common task of submitting SPSS command syntax from a program block is done
using the Submit function from the spss module. In its simplest usage, the function
accepts a quoted string representing an SPSS command and submits the command
text to SPSS for processing. For example,

BEGIN PROGRAM.
import spss
spss.Submit("FREQUENCIES VARIABLES=var1, var2, var3.")
END PROGRAM.

imports the spss module and submits a FREQUENCIES command to SPSS.

The functions in the spss module enable you to retrieve information from, or run
command syntax on, the active dataset. You can load a dataset prior to a BEGIN
PROGRAM block as in:

GET FILE='c:\examples\data\Employee data.sav'.
BEGIN PROGRAM.
import spss
spss.Submit("FREQUENCIES VARIABLES=gender, educ, jobcat, minority.")
END PROGRAM.



218

Chapter 12

or you can use the Submit function to load a dataset from within a program block as in:

BEGIN PROGRAM.
import spss
spss.Submit(["GET FILE='c:/examples/data/Employee data.sav'.",

"FREQUENCIES VARIABLES=gender, educ, jobcat, minority."])
END PROGRAM.

As illustrated in this example, the Submit function can accept a list of strings,
each of which consists of a single SPSS command.

Notice that the file specification uses the forward slash (/) instead of the usual
backslash (\). Escape sequences in Python begin with a backslash (\), so using
a forward slash prevents an unintentional escape sequence. And SPSS always
accepts a forward slash in file specifications. You can include backslashes and
avoid escape sequences by using a raw string for the file specification. For more
information, see “Using Raw Strings in Python” in Chapter 13 on p. 237.

SPSS command syntax generated within a program block and submitted to SPSS must
follow interactive syntax rules. For most practical purposes, this means that SPSS
command strings that you build in a programming block must contain a period (.) at
the end of each SPSS command. The period is optional if the argument to the Submit
function only contains one command. If you want to include a file of commands in a
session and the file contains BEGIN PROGRAM blocks, you must use the SPSS INSERT

command in interactive mode (the default), as opposed to the INCLUDE command.
When you submit commands for SPSS procedures from BEGIN PROGRAM blocks,

you can embed the procedure calls in Python loops, thus repeating the procedure many
times but with specifications that change for each iteration. That’s something you can’t
do with the looping structures (LOOP-END LOOP and DO REPEAT-END REPEAT)
available in SPSS command syntax because the loop commands are transformation
commands, and you can’t have procedures inside such structures.

Example

Consider a regression analysis where you want to investigate different scenarios for
a single predictor. Each scenario is represented by a different variable, so you need
repeated runs of the Regression procedure, using a different variable each time. Setting
aside the task of building the list of variables for the different scenarios, you might
have something like:

for var in varlist:
spss.Submit("REGRESSION /DEPENDENT res /METHOD=ENTER " + var + ".")



219

Getting Started with Python Programming in SPSS

varlist is meant to be a Python list containing the names of the variables for
the different scenarios.

On each iteration of the for loop var is the name of a different variable in
varlist. The value of var is then inserted into the command string for the
REGRESSION command.

For more information on the Submit function, see Appendix A on p. 361.

Dynamically Creating SPSS Command Syntax

Using the functions in the spss module, you can dynamically compose SPSS
command syntax based on dictionary information and/or data values in the active
dataset.

Example

Run the DESCRIPTIVES procedure, but only on the scale variables in the active dataset.

*python_desc_on_scale_vars.sps.
BEGIN PROGRAM.
import spss
spss.Submit("GET FILE='c:/examples/data/Employee data.sav'.")
varList=[]
for i in range(spss.GetVariableCount()):

if spss.GetVariableMeasurementLevel(i)=='scale':
varList.append(spss.GetVariableName(i))

if len(varList):
spss.Submit("DESCRIPTIVES " + " ".join(varList) + ".")

END PROGRAM.

The program block uses four functions from the spss module:

spss.GetVariableCount returns the number of variables in the active dataset.

spss.GetVariableMeasurementLevel(i) returns the measurement level of
the variable with index value i. The index value of a variable is the position of the
variable in the dataset, starting with the index value 0 for the first variable in file
order. Dictionary information is accessed one variable at a time.



220

Chapter 12

spss.GetVariableName(i) returns the name of the variable with index value i,
so you can build a list of scale variable names. The list is built with the Python list
method append.

spss.Submit submits the string containing the syntax for the DESCRIPTIVES
command to SPSS. The set of SPSS variables included on the DESCRIPTIVES
command comes from the Python variable varList, which is a Python list,
but the argument to the Submit function in this case is a string. The
list is converted to a string using the Python string method join, which
creates a string from a list by concatenating the elements of the list, using
a specified string as the separator between elements. In this case, the
separator is " ", a single space. In the present example, varList has the value
['id','bdate','salary','salbegin','jobtime','prevexp']. The
completed string is:

DESCRIPTIVES id bdate salary salbegin jobtime prevexp.

When you’re submitting a single command to SPSS, it’s usually simplest to call the
Submit function with a string representing the command, as in the above example.
You can submit multiple commands to SPSS with a single call to Submit by passing
to Submit a list of strings, each of which represents a single SPSS command. For
more information, see Appendix A on p. 361. You can also submit a block of SPSS
commands as a single string that spans multiple lines, resembling the way you might
normally write command syntax. For more information, see “Creating Blocks of
Command Syntax within Program Blocks” in Chapter 13 on p. 233.

Capturing and Accessing Output

Functionality provided with the SPSS-Python Integration Plug-In allows you to access
SPSS procedure output in a programmatic fashion. This is made possible through an
in-memory workspace—referred to as the XML workspace—that can contain an
XML representation of procedural output. Output is directed to the workspace with the
OMS command and retrieved from the workspace with functions that employ XPath
expressions. For the greatest degree of control, you can work with OMS or XPath
explicitly, or you can use utility functions provided by SPSS that construct appropriate
OMS commands and XPath expressions for you, given a few simple inputs.



221

Getting Started with Python Programming in SPSS

Example

In this example, we’ll run the Descriptives procedure on a set of variables, direct the
output to the XML workspace, and retrieve the mean value of one of the variables.

*python_retrieve_output_value.sps.
BEGIN PROGRAM.
import spss,spssaux
spss.Submit("GET FILE='c:/examples/data/Employee data.sav'.")
cmd="DESCRIPTIVES VARIABLES=salary,salbegin,jobtime,prevexp."
desc_table,errcode=spssaux.CreateXMLOutput(

cmd,
omsid="Descriptives")

meansal=spssaux.GetValuesFromXMLWorkspace(
desc_table,
tableSubtype="Descriptive Statistics",
rowCategory="Current Salary",
colCategory="Mean",
cellAttrib="text")

print "The mean salary is: ", meansal[0]
END PROGRAM.

The BEGIN PROGRAM block starts with an import statement for two modules:
spss and spssaux. spssaux is a supplementary module provided by SPSS.
Among other things, it contains two functions for working with procedure output:
CreateXMLOutput generates an OMS command to route output to the XML
workspace, and it submits both the OMS command and the original command to
SPSS; and GetValuesFromXMLWorkspace retrieves output from the XML
workspace without the explicit use of XPath expressions.

The call to CreateXMLOutput includes the command, as a quoted string, to
be submitted to SPSS, and the associated OMS identifier (available from the
OMS Identifiers dialog box on the Utilities menu). In this example, we’re
submitting a DESCRIPTIVES command and the associated OMS identifier is
“Descriptives.” Output generated by DESCRIPTIVES will be routed to the XML
workspace and associated with an identifier whose value is stored in the variable
desc_table. The variable errcode contains any error level from the DESCRIPTIVES
command—zero if no error occurs.

In order to retrieve information from the XML workspace, you need to provide the
identifier associated with the output—in this case, the value of desc_table. That
provides the first argument to the GetValuesFromXMLWorkspace function.



222

Chapter 12

We’re interested in the mean value of the variable for current salary. If you were
to look at the Descriptives output in the Viewer, you’d see that this value can be
found in the Descriptive Statistics table on the row for the variable Current Salary
and under the Mean column. These same identifiers—the table name, row name,
and column name—are used to retrieve the value from the XML workspace, as you
can see in the arguments used for the GetValuesFromXMLWorkspace function.

In the general case, GetValuesFromXMLWorkspace returns a list of values;
for example, the values in a particular row or column in an output table. Even
when only one value is retrieved, as in this example, the function still returns a list
structure, albeit a list with a single element. Since we are interested in only this
single value (the value with index position 0 in the list), we extract it from the list.

For more information, see “Retrieving Output from SPSS Commands” in Chapter
16 on p. 287.

Python Syntax Rules

Within a program block, only statements and functions recognized by Python are
allowed. Python syntax rules differ from SPSS command syntax rules in a number
of ways:

Python is case-sensitive. This includes variable names, function names, and pretty
much anything else you can think of. A Python variable name of myvariable is not the
same as MyVariable, and the Python function spss.GetVariableCount is not the
same as SPSS.getvariablecount.

There is no command terminator in Python, and continuation lines come in two flavors:

Implicit. Expressions enclosed in parentheses, square brackets, or curly braces can
continue across multiple lines without any continuation character. Quoted strings
contained in such an expression cannot continue across multiple lines unless they
are triple-quoted. The expression continues implicitly until the closing character
for the expression is encountered. For example, lists in Python are enclosed in
square brackets, functions contain a pair of parentheses (whether they take any
arguments or not), and dictionaries are enclosed in curly braces, so they can all
span multiple lines.

Explicit. All other expressions require a backslash at the end of each line to
explicitly denote continuation.



223

Getting Started with Python Programming in SPSS

Line indentation indicates grouping of statements. Groups of statements contained in
conditional processing and looping structures are identified by indentation. There is no
statement or character that indicates the end of the structure. Instead, the indentation
level of the statements defines the structure, as in:

for i in range(varcount):
"""A multi-line comment block enclosed in a pair of
triple-quotes."""
if spss.GetVariableMeasurementLevel(i)=="scale":

ScaleVarList.append(spss.GetVariableName(i))
else:

CatVarList.append(spss.GetVariableName(i))

As shown here, you can include a comment block that spans multiple lines by
enclosing the text in a pair of triple-quotes. If the comment block is to be part of
an indented block of code, the first set of triple quotes must be at the same level of
indentation as the rest of the block.

Escape sequences begin with a backslash. Python uses the backslash (\) character as the
start of an escape sequence; for example, "\n" for a newline and "\t" for a tab. This
can be troublesome when you have a string containing one of these sequences; as when
specifying file paths in Windows, for example. Python offers a number of options for
dealing with this. For any string where you just need the backslash character, you can
use a double backslash (\\). For strings specifying file paths, you can use forward
slashes (/) instead of backslashes. You can also specify the string as a raw string by
prefacing it with an r or R; for example, r"c:\temp". Backslashes in raw strings are
treated as the backslash character, not as the start of an escape sequence. For more
information, see “Using Raw Strings in Python” in Chapter 13 on p. 237.

Python Quoting Conventions

Strings in Python can be enclosed in matching single quotes (‘) or double quotes
(“), as in SPSS.

To specify an apostrophe (single quote) within a string, enclose the string in double
quotes. For example,

"Joe's Bar and Grille"

is treated as

Joe's Bar and Grille

To specify quotation marks (double quote) within a string, use single quotes to
enclose the string, as in



224

Chapter 12

'Categories Labeled "UNSTANDARD" in the Report'

Python treats doubled quotes of the same type as the outer quotes differently than
SPSS. For example,

'Joe''s Bar and Grille'

is treated as

Joes Bar and Grille

in Python; that is, the concatenation of the two strings 'Joe' and 's Bar and

Grille'.

Mixing Command Syntax and Program Blocks

Within a given command syntax job, you can intersperse BEGIN PROGRAM-END

PROGRAM blocks with any other syntax commands, and you can have multiple program
blocks in a given job. Python variables assigned in a particular program block are
available to subsequent program blocks as shown in this simple example:

*python_multiple_program_blocks.sps.
DATA LIST FREE /var1.
BEGIN DATA
1
END DATA.
DATASET NAME File1.
BEGIN PROGRAM.
import spss
File1N=spss.GetVariableCount()
END PROGRAM.
DATA LIST FREE /var1 var2 var3.
BEGIN DATA
1 2 3
END DATA.
DATASET NAME File2.
BEGIN PROGRAM.
File2N=spss.GetVariableCount()
if File2N > File1N:

message="File2 has more variables than File1."
elif File1N > File2N:

message="File1 has more variables than File2."
else:

message="Both files have the same number of variables."
print message
END PROGRAM.



225

Getting Started with Python Programming in SPSS

The first program block contains the import spss statement. This statement is
not required in the second program block.

The first program block defines a programmatic variable, File1N, with a value set
to the number of variables in the active dataset. The Python code in a program
block is executed when the END PROGRAM statement in that block is reached, so
the variable File1N has a value prior to the second program block.

Prior to the second program block, a different dataset becomes the active dataset,
and the second program block defines a programmatic variable, File2N, with a
value set to the number of variables in that dataset.

The value of File1N persists from the first program block, so the two variable
counts can be compared in the second program block.

Passing Values from a Program Block to SPSS Command Syntax

Within a program block, you can define an SPSS macro variable that can be used
outside of the block in SPSS command syntax. This provides the means to pass values
computed in a program block to command syntax that follows the block. Although you
can run command syntax from Python using the Submit function, this is not always
necessary. The method described here shows you how to use Python to compute what
you need and then continue on with the rest of your syntax job, making use of the
results from Python. As an example, consider building separate lists of the categorical
and scale variables in a dataset, and then submitting a FREQUENCIES command for
any categorical variables and a DESCRIPTIVES command for any scale variables. This
example is an extension of an earlier one where only scale variables were considered.
For more information, see “Dynamically Creating SPSS Command Syntax” on p. 219.



226

Chapter 12

*python_set_varlist_macros.sps.
BEGIN PROGRAM.
import spss
spss.Submit("GET FILE='c:/examples/data/Employee data.sav'.")
catlist=[]
scalist=[]
for i in range(spss.GetVariableCount()):

varName=spss.GetVariableName(i)
if spss.GetVariableMeasurementLevel(i) in ['nominal', 'ordinal']:

catlist.append(varName)
else:

scalist.append(varName)
if len(catlist):

categoricalVars = " ".join(catlist)
spss.SetMacroValue("!catvars", categoricalVars)

if len(scalist):
scaleVars = " ".join(scalist)
spss.SetMacroValue("!scavars", scaleVars)

END PROGRAM.

FREQUENCIES !catvars.
DESCRIPTIVES !scavars.

The for loop builds separate Python lists of the categorical and scale variables in
the active dataset.

The SetMacroValue function in the spss module takes a name and a value
(string or numeric), and creates an SPSS macro of that name that expands to the
specified value (a numeric value provided as an argument is converted to a string).
The macro is then available to any SPSS command syntax following the BEGIN
PROGRAM block that created the macro. In the present example, this mechanism
is used to create macros containing the lists of categorical and scale variables.
For example, spss.SetMacroValue("!catvars", categoricalVars)
creates an SPSS macro named !catvars that expands to the list of categorical
variables in the active dataset.

Tests are performed to determine if the list of categorical variables or the list
of scale variables is empty before attempting to create associated macros. For
example, if there are no categorical variables in the dataset, then len(catlist)
will be 0 and interpreted as false for the purpose of evaluating an if statement.



227

Getting Started with Python Programming in SPSS

At the completion of the BEGIN PROGRAM block, the macro !catvars contains
the list of categorical variables and !scavars contains the list of scale variables.
If there are no categorical variables, then !catvars will not exist. Similarly, if
there are no scale variables, then !scavars will not exist.

The FREQUENCIES and DESCRIPTIVES commands that follow the program block
reference the macros created in the block.

You can also pass information from command syntax to program blocks through the
use of datafile attributes. For more information, see “Retrieving Variable or Datafile
Attributes” in Chapter 14 on p. 268.

Handling Errors

Errors detected during execution generate exceptions in Python. Aside from exceptions
caught by the Python interpreter, the spss module catches three types of errors and
raises an associated exception: an error in executing an SPSS command submitted via
the Submit function, an error in calling a function in the spss module (such as using
a string argument where an integer is required), and an error in executing a function
in the spss module (such as providing an index beyond the range of variables in
the active dataset).

Whenever there’s a possibility of generating an error from a function in the spss
module, it’s best to include the associated code in a Python try clause, followed by an
except or finally clause that initiates the appropriate action.

Example

Suppose you need to find all .sav files, in a directory, that contain a particular variable.
You search for filenames that end in .sav and attempt to obtain the list of variables in
each. There’s no guarantee, though, that a file with a name ending in .sav is actually
an SPSS format file, so your attempt to obtain SPSS variable information may fail.
Here’s a code sample that handles this, assuming you already have the list of files
that end with .sav:

for fname in savfilelist:
try:

spss.Submit("get file='" + dirname + "/" + fname + "'.")
<test if variable is in file and print file name if it is>

except:
pass



228

Chapter 12

The first statement in the try clause submits a GET command to SPSS to attempt
to open a file from the list of those that end with .sav.

If the file can be opened, control passes to the remainder of the statements in the
try clause to test if the file contains the variable and print the filename if it does.

If the file can’t be opened, an exception is raised and control passes to the except
clause. Since the file isn’t a valid SPSS data file, there’s no action to take, so the
except clause just contains a pass statement.

In addition to generating exceptions for particular scenarios, the spss module provides
functions to obtain information about the errors that gave rise to the exceptions. The
function GetLastErrorLevel returns the error code for the most recent error, and
GetLastErrorMessage returns text associated with the error code.

For more information on the GetLastErrorLevel and GetLastErrorMessage

functions, see Appendix A on p. 361.

Using a Python IDE

The SPSS-Python Integration Plug-In provides functionality to drive the SPSS backend
from any Python IDE (Integrated Development Environment). IDEs typically include
a rich set of tools for creating and debugging software, such as editors that do code
completion and syntax highlighting, and debuggers that allow you to step through
your code and inspect variable and attribute values. Once you’ve completed code
development in an IDE, you can copy it into an SPSS command syntax job.

To drive the SPSS backend from a Python IDE, simply include an import spss

statement in the IDE’s code window. You can follow the import statement with calls
to any of the functions in the spss module, just like with program blocks in SPSS
command syntax jobs, but you don’t include the BEGIN PROGRAM-END PROGRAM

statements. A sample session using the PythonWin IDE (a freely available IDE for
working with Python on Windows) is shown below, and it illustrates a nice feature of
using an IDE—the ability to run code one line at a time and examine the results.



229

Getting Started with Python Programming in SPSS

Figure 12-2
Driving SPSS from a Python IDE

When you submit SPSS commands that would normally generate Viewer output, the
output is directed to the IDE’s output window, as shown below.

Figure 12-3
Output from an SPSS command displayed in a Python IDE



230

Chapter 12

You can suppress output that would normally go to an SPSS Viewer by calling the
SetOutput function in the spss module. The code spss.SetOutput("OFF")
suppresses output and spss.SetOutput("ON") turns it back on. By default, output
is displayed.

It can also be useful to programmatically determine whether the SPSS backend is
being driven by an IDE. This might be the case if you have code that manipulates
objects in the SPSS Viewer. Since no Viewer exists when you drive the SPSS backend
from an IDE, you would need to know if your code was being run from an IDE,
so you could raise an appropriate exception. The check is done with the function
spss.PyInvokeSpss.IsXDriven, which returns 1 if a Python process, such as an
IDE, is driving the SPSS backend and 0 if SPSS is driving the SPSS backend.

Note: You can drive the SPSS backend with any separate Python process, such as
the Python interpreter. Once you’ve installed the SPSS-Python Integration Plug-In,
you initiate this mode with the import spss statement, just like driving the SPSS
backend from a Python IDE.

Supplementary Python Modules for Use with SPSS

The spss module, included with the SPSS-Python Integration Plug-In, provides
the base functionality for writing Python code that interacts with SPSS. SPSS has
also created a number of Python modules that build on, and in some cases extend,
the functionality provided by the spss module. These supplementary modules are
available for download from SPSS Developer Central at www.spss.com/devcentral.
The modules include but are not limited to:

Utilities to work with SPSS variable dictionary information and procedure output.

Tools for working with the case data in the active dataset.

Functionality to create, manipulate, and export items in the SPSS Viewer.

Along with many of the modules, you’ll find command syntax (.sps) files that provide
examples of using the module functions in BEGIN PROGRAM-END PROGRAM blocks.
And you’ll get practice in using a number of functions from these modules in examples
to follow. In many cases, the modules provide classes that wrap functionality from
the spss module, allowing you to exploit object-oriented methods. The modules are
provided in the form of source (.py) files, so they can be customized, studied as a
learning resource, or used as a foundation for creating your own modules. Instructions
for downloading and using the modules are provided at SPSS Developer Central.



231

Getting Started with Python Programming in SPSS

Getting Help

Help with using the features of the SPSS-Python Integration Plug-In is available from
a number of resources:

Appendix A provides descriptions and basic usage examples for each of the
functions in the spss module. Once you’ve installed the plug-in, this material
is also available as part of the PDF document SPSS-Python Integration package,
located under \help\programmability\ in your SPSS application directory or
accessed by choosing the Programmability option from the Help menu.

An online description of a particular function, class, method, or module is available
using the Python help function, once the associated module has been imported.
For example, to obtain a description of the Submit function in the spss module,
use help(spss.Submit) after import spss. To display information for all of
the objects in a module, use help(module name), as in help(spss). When
the help function is used within a BEGIN PROGRAM-END PROGRAM block, the
description is displayed in a log item in the Viewer, if a Viewer is available.

The spss module and the supplementary modules are provided as source code.
Once you’re familiar with Python, you may find that consulting the source code is
the best way to locate the information you need, such as which functions or classes
are included with a module or what arguments are needed for a given function.

Usage examples for the supplementary Python modules provided by SPSS can be
accessed from SPSS Developer Central at www.spss.com/devcentral. Examples
for a particular module are bundled in command syntax (.sps) files and included
with the topic for the module.

Detailed command syntax reference information for BEGIN PROGRAM-END
PROGRAM can be found in the SPSS Help system under the “Programmability”
heading.

For help in getting started with the Python programming language, see the Python
tutorial, available at http://docs.python.org/tut/tut.html.

http://docs.python.org/tut/tut.html
http://docs.python.org/tut/tut.html




Chapter

13
Best Practices

This section provides advice for dealing with some common issues and introduces a
number of features that will help you with writing code in program blocks.

Creating Blocks of Command Syntax within Program Blocks

Often, it is desirable to specify blocks of SPSS commands on multiple lines within
a program block, which more closely resembles the way you might normally write
command syntax. This is best accomplished using the Python triple-quoted string
convention, where line breaks are allowed and retained as long as they occur within a
string enclosed in a set of triple single or double quotes.

Example

*python_triple_quoted_string.sps.
BEGIN PROGRAM.
import spss
spss.Submit(r"""
GET FILE='c:/examples/data/Employee data.sav'.
SORT CASES BY gender.
SPLIT FILE

LAYERED BY gender.
DESCRIPTIVES

VARIABLES=salary salbegin jobtime prevexp
/STATISTICS=MEAN STDDEV MIN MAX.

SPLIT FILE OFF.
""")
END PROGRAM.

The triple double quotes enclose a block of SPSS command syntax that is
submitted for processing, retaining the line breaks. You can use either triple single
quotes or triple double quotes, but you must use the same type (single or double)
on both sides of the command syntax block.

233



234

Chapter 13

If the command syntax block contains a triple quote, be sure that it’s not the same
type as the type you are using to enclose the block; otherwise, Python will treat it
as the end of the block.

Notice that the triple-quoted expression is prefixed with the letter r. The r prefix to
a string specifies Python’s raw mode. This allows you to use the single backslash
(\) notation for file paths, which is standard for Windows and DOS. That said, it is a
good practice to use forward slashes (/) in file paths, since you may at times forget
to use raw mode, and SPSS accepts a forward slash for any backslash in a file
specification. For more information, see “Using Raw Strings in Python” on p. 237.

Wrapping blocks of SPSS command syntax in triple quotes within a BEGIN
PROGRAM-END PROGRAM block allows you to easily convert an SPSS syntax job to a
Python job. For more information, see “Migrating Command Syntax Jobs to Python”
in Chapter 18 on p. 313.

Dynamically Specifying Command Syntax Using String
Substitution

Most often, you embed SPSS command syntax within program blocks so that you can
dynamically specify pieces of the syntax, such as SPSS variable names. This is best
done using string substitution in Python. For example, say you want to create a split file
on a particular variable whose name is determined dynamically. Omitting the code for
determining the particular variable, a code sample to accomplish this might look like:

spss.Submit(r"""
SORT CASES BY %s.
SPLIT FILE
LAYERED BY %s.

""" %(splitVar,splitVar))

Within a string (in this case, a triple-quoted string), %s marks the points at which
a string value is to be inserted. The particular value to insert is taken from the %
expression that follows the string; in this case, %(splitVar,splitVar). The value
of the first item in the % expression replaces the first occurrence of %s, the value of the



235

Best Practices

second item replaces the second occurrence of %s, and so on. Let’s say that the variable
splitVar has the value "gender". The command string submitted to SPSS would be:

SORT CASES BY gender.
SPLIT FILE
LAYERED BY gender.

The above approach can become cumbersome once you have to substitute more than a
few values into a string expression, since you have to keep track of which occurrence
of %s goes with which value in the % expression. Using a Python dictionary affords an
alternative to providing a sequential list of substitution values.

Example

Let’s say you have many datasets, each consisting of employee data for a particular
department of a large company. Each dataset contains a variable for current salary, a
variable for starting salary, and a variable for the number of months since hire. For
each dataset, you’d like to compute the average annual percentage increase in salary
and sort by that value to identify employees who may be undercompensated. The
problem is that the names of the variables you need are not constant across the datasets,
while the variable labels are constant. Current salary is always labeled Current Salary,
starting salary is always labeled Beginning Salary, and months since hire is always
labeled Months since Hire. For simplicity, the following program block performs the
calculation for a single file; however, everything other than the file retrieval command
is completely general.



236

Chapter 13

*python_string_substitution.sps.
BEGIN PROGRAM.
import spss
spss.Submit("GET FILE='c:/examples/data/employee data.sav'.")
for i in range(spss.GetVariableCount()):

label = spss.GetVariableLabel(i).lower()
if label=='current salary':

cursal=spss.GetVariableName(i)
elif label=='beginning salary':

begsal=spss.GetVariableName(i)
elif label == 'months since hire':

mos=spss.GetVariableName(i)
spss.Submit(r"""
SELECT IF %(mos)s > 12.
COMPUTE AVG_PCT_CHANGE =

100*(%(cur)s - %(beg)s)/(%(beg)s * TRUNC(%(mos)s/12)).
SORT CASES BY AVG_PCT_CHANGE (A).
""" %{'cur':cursal,'beg':begsal,'mos':mos})
END PROGRAM.

First, loop through the SPSS variables in the active dataset, setting the Python
variable cursal to the name of the variable for current salary; begsal, to the
name of the variable for beginning salary; and mos, to the name of the variable
for months since hire.

The Submit function contains a triple-quoted string that resolves to the command
syntax needed to perform the calculation. The expression

%{'cur':cursal,'beg':begsal,'mos':mos}

following the triple quotes defines a Python dictionary that is used to specify the
string substitution. A Python dictionary consists of a set of keys, each of which
has an associated value that can be accessed simply by specifying the key. In
the current example, the dictionary has the keys cur, beg, and mos associated
with the values of the variables cursal, begsal, and mos, respectively. Instead of
using %s to mark insertion points, you use %(key)s. For example, you insert
%(beg)s wherever you want the value associated with the key beg—in other
words, wherever you want the value of begsal.



237

Best Practices

For the dataset used in this example, cursal has the value 'salary', begsal has the
value 'salbegin', and mos has the value 'jobtime'. After the string substitution,
the triple-quoted expression resolves to the following block of command syntax:

SELECT IF jobtime > 12.
COMPUTE AVG_PCT_CHANGE =

100*(salary - salbegin)/(salbegin * TRUNC(jobtime/12)).
SORT CASES BY AVG_PCT_CHANGE (A).

You can simplify the statement for defining the dictionary for string substitution by
using the locals function. It produces a dictionary whose keys are the names of the
local variables and whose associated values are the current values of those variables.
For example:

splitVar = 'gender'
spss.Submit(r"""
SORT CASES BY %(splitVar)s.
SPLIT FILE
LAYERED BY %(splitVar)s.

""" %locals())

splitVar is a local variable; thus, the dictionary created by the locals function
contains the key splitVar with the value 'gender'. The string'gender' is then
substituted for every occurrence of %(splitVar)s in the triple-quoted string.

String substitution is not limited to triple-quoted strings. For example, the code sample:

spss.Submit("SORT CASES BY %s." %(sortkey))

runs a SORT CASES command using a single variable whose name is the value of the
Python variable sortkey.

Using Raw Strings in Python

Python reserves certain combinations of characters beginning with a backslash (\)
as escape sequences. For example, "\n" is the escape sequence for a linefeed and
"\t" is the escape sequence for a horizontal tab. This is potentially problematic
when specifying strings, such as file paths or regular expressions, that contain these
sequences. For example, the path "c:\temp\myfile.sav" would be interpreted
by Python as "c:", followed by a tab, followed by "emp\myfile.sav", which is
probably not what you intended.



238

Chapter 13

The problem of backslashes is best solved by using raw strings in Python. When
you preface a string with an r or R, Python treats all backslashes in the string
as the backslash character and not as the start of an escape sequence. The only
caveat is that the last character in the string cannot be a backslash. For example,
filestring = r"c:\temp\myfile.sav" sets the variable filestring to the string
"c:\temp\myfile.sav". Because a raw string was specified, the sequence "\t" is
treated as a backslash character followed by the letter t.

You can preface any string, including triple-quoted strings, with r or R to indicate
that it’s a raw string. That is a good practice to employ, since then you don’t have to
worry about any escape sequences that might unintentionally exist in a triple-quoted
string containing a block of SPSS command syntax. SPSS also accepts a forward
slash (/) for any backslash in a file specification. This provides an alternative to using
raw strings for file specifications.

It is also a good idea to use raw strings for regular expressions. Regular expressions
define patterns of characters and enable complex string searches. For example, using
a regular expression, you could search for all variables in the active dataset whose
names end in a digit. For more information, see “Using Regular Expressions to Select
Variables” in Chapter 14 on p. 271.

Displaying Command Syntax Generated by Program Blocks

For debugging purposes, it is convenient to see the completed syntax passed to SPSS
by any calls to the Submit function in the spss module. This is enabled through
command syntax with SET PRINTBACK ON MPRINT ON. Because these settings
persist across sessions, you need to set them only once.

Example

SET PRINTBACK ON MPRINT ON.
BEGIN PROGRAM.
import spss
spss.Submit("GET FILE='c:/examples/data/Employee data.sav'.")
varName = spss.GetVariableName(spss.GetVariableCount()-1)
spss.Submit("FREQUENCIES /VARIABLES=" + varName + ".")
END PROGRAM.



239

Best Practices

The generated command syntax is displayed in a log item in the SPSS Viewer, if the
Viewer is available, and shows the completed FREQUENCIES command as well as
the GET command:

300 M> GET FILE='c:/examples/data/Employee data.sav'.
302 M> FREQUENCIES /VARIABLES=minority.

Handling Wide Output in the Viewer

Within a program block, information sent to standard output is displayed in a log item
in the Viewer. To help prevent long output lines from being truncated, it’s a good
idea to set your Viewer preferences to show wide lines. This is accomplished from
the Viewer tab of the Options dialog box by selecting Wide (132 characters) in the
Text Output Page Size group.

If you need to display a long list from Python, consider displaying each item in the
list on a separate line. For example, given a Python list called alist, use:

print "\n".join(alist)

The list is converted to a string using the Python string method join, which creates
a string from a list by concatenating the elements of the list, using a specified string
as the separator between elements. In this case, the separator is "\n", which is the
Python escape sequence for a line break, causing each element of alist to be displayed
on a separate line.

Creating User-Defined Functions in Python

BEGIN PROGRAM-END PROGRAM blocks encapsulate program code, so they might
seem to be analogous to subroutines in other languages, but they differ fundamentally
from subroutines since they can’t be called. Undoubtedly, you will eventually want to
create something like a subroutine and pass parameters to it. This is best done with a



240

Chapter 13

user-defined function in Python. In fact, you may want to construct a library of your
standard utility routines and always import it. The basic steps are:

Encapsulate your code in a user-defined function. For a good introduction to
user-defined functions in Python, see the section “Defining Functions” in the
Python tutorial, available at http://docs.python.org/tut/tut.html.

Include your function in a Python module on the Python search path. To be sure
that Python can find your new module, you may want to save it to your Python
“site-packages” directory, typically C:\Python24\Lib\site-packages.

A Python module is simply a text file containing Python definitions and statements.
You can create a module with a Python IDE, or with any text editor, by saving a
file with an extension of .py. The name of the file, without the .py extension, is
then the name of the module. You can have many functions in a single module.

Call your function from within a BEGIN PROGRAM-END PROGRAM block. The
block should contain an import statement for the module containing the function
(unless you’ve imported the module in a previous block).

Example

Let’s say you have a function that effectively transforms a string variable in SPSS to
a numeric variable. The function has two parameters: the name of the variable to
transform and the format for the new numeric variable. The function definition is:

def StringToNumeric(varname,varformat='F8.2'):
"""Transform a string variable in SPSS to a numeric variable.
varname is the name of the variable to transform.
varformat is the format for the new numeric variable.
"""
spss.Submit(r"""
NUMERIC temp(%(format)s).
COMPUTE temp=NUMBER(%(var)s,%(format)s).
APPLY DICTIONARY FROM=*

/SOURCE VARIABLES=%(var)s /TARGET VARIABLES=temp.
MATCH FILES FILE=* /DROP=%(var)s.
RENAME VARIABLE (temp=%(var)s).
""" %{'format': varformat,'var': varname})

The def statement signals the beginning of a function named StringToNumeric.
The colon at the end of the def statement is required.

http://docs.python.org/tut/tut.html
http://docs.python.org/tut/tut.html


241

Best Practices

The function takes two parameters with the names varname and varformat. The
parameter varformat has a default value of 'F8.2', so specifying a value for it
is optional when calling the function.

In this example, the function is used solely to dynamically specify a block of SPSS
command syntax, which is submitted to SPSS for processing. The values needed
to specify the command syntax come from the function parameters and are inserted
into the command string using string substitution. For more information, see
“Dynamically Specifying Command Syntax Using String Substitution” on p. 234.

You include the function in a module named samplelib and now want to use the
function to transform a string variable named amt to numeric. Since amt represents
a dollar amount, you override the default format with the value 'DOLLAR10.2'.
Following is a command syntax file, including sample data, to do this:

*python_string_to_numeric.sps.
DATA LIST LIST /amt(A12) customer_ID(F8).
BEGIN DATA
'1,235.23' 181254
'53,261.32' 011618
END DATA.
VARIABLE LABEL amt 'Recent purchase'

/ customer_ID 'Customer ID #'.
BEGIN PROGRAM.
import samplelib
samplelib.StringToNumeric('amt','DOLLAR10.2')
END PROGRAM.

The BEGIN PROGRAM block starts with a statement to import the samplelib
module, which contains the definition for the StringToNumeric function.

Note: To run this program block, you need to copy the module file samplelib.py from
\examples\python on the accompanying CD to your Python “site-packages” directory,
typically C:\Python24\Lib\site-packages. Because the samplelib module uses
functions in the spss module, it includes an import spss statement.

Creating a File Handle to the SPSS Install Directory

Depending on how you work with SPSS, it may be convenient to have easy access to
files stored in the SPSS installation directory. This is best done by defining a file
handle to the SPSS installation directory, using a function from the spssaux module.



242

Chapter 13

Example

*python_handle_to_installdir.sps.
BEGIN PROGRAM.
import spss, spssaux
spssaux.GetSPSSInstallDir("SPSSDIR")
spss.Submit(r"GET FILE='SPSSDIR/Employee data.sav'.")
END PROGRAM.

The program block imports and uses the supplementary module spssaux,
available for download from SPSS Developer Central at www.spss.com/devcentral.

The function GetSPSSInstallDir, from the spssaux module, takes a name
as a parameter and creates a file handle of that name pointing to the location of
the SPSS installation directory.

The file handle is then available for use in any file specification that follows.
Note that the command string for the GET command is a raw string; that is, it is
prefaced by an r. It is a good practice to use raw strings for command strings that
include file specifications so that you don’t have to worry about unintentional
escape sequences in Python. For more information, see “Using Raw Strings in
Python” on p. 237.

Note: To run this program block, you’ll need to download the spssaux module from
SPSS Developer Central and save it to your Python “site-packages” directory, typically
C:\Python24\Lib\site-packages.

Choosing the Best Programming Technology
With the introduction of the SPSS-Python Integration Plug-In, you now have three
programming technologies (in addition to SPSS command syntax), available for use
with SPSS—the SPSS macro language, the SPSS scripting facility, and Python. This
section provides some advice on choosing the best technology for your task.

To start with, the ability to use Python to dynamically create and control SPSS
command syntax renders SPSS macros mostly obsolete. Anything that can be done
with a macro can be done with a Python user-defined function. For an example
of an existing macro recoded in Python, see “Migrating Macros to Python” on p.
317. Macros are still important for passing information from a BEGIN PROGRAM

block so that it is available to SPSS command syntax outside of the block. For more
information, see the section “Passing Values from a Program Block to SPSS Command
Syntax” in “Mixing Command Syntax and Program Blocks” on p. 224.



243

Best Practices

Like the SPSS scripting facility, Python provides a solution for programming
tasks that cannot readily be done with SPSS command syntax. In that sense, it is
not intended as a replacement for the SPSS command syntax language. Python is,
however, almost always the preferred choice over the SPSS scripting facility. It is
a much richer programming language and is supported by a vast open-source user
community that actively extends the basic language with utilities such as IDEs, GUI
toolkits, and packages for scientific computing. And Python statements always run
synchronously with command syntax.

Consider using Python for tasks you may have previously done with the scripting
facility, such as:

Accessing the SPSS data dictionary.

Dynamically generating command syntax, such as when the particular variables
in a dataset are not known in advance.

Manipulating files and directories.

Retrieving case data to accomplish a data-oriented task outside of command syntax.

Manipulating output that appears in the Viewer, and integrating Viewer output into
applications that support OLE automation, such as Microsoft PowerPoint.

Encapsulating a set of tasks in a program that accepts parameters and can be
invoked from command syntax.

Use the SPSS scripting facility for:

Automatically performing a set of actions when a particular kind of object is
created in the Viewer. This is referred to as autoscripting.

Running custom dialog boxes or driving SPSS dialog boxes when operating in
distributed mode.

You’ll still want to use the SPSS OLE automation interfaces if you’re interested in
controlling SPSS from an application that supports Visual Basic, such as Microsoft
Office or Visual Basic itself.

Using Exception Handling in Python
Errors that occur during execution are called exceptions in Python. Python includes
constructs that allow you to handle exceptions so that you can decide whether
execution should proceed or terminate. You can also raise your own exceptions,



244

Chapter 13

causing execution to terminate when a test expression indicates that the job is
unlikely to complete in a meaningful way. And you can define your own exception
classes, making it easy to package extra information with the exception and to test for
exceptions by type. For information on defining your own exception classes, see the
Python tutorial, available at http://docs.python.org/tut/tut.html.

Raising an Exception to Terminate Execution

There are certainly cases where it is useful to create an exception in order to terminate
execution. Some common examples include:

A required argument is omitted in a function call.

A required file, such as an auxiliary Python module, cannot be imported.

A value passed to a function is of the wrong type, such as numeric instead of string.

Python allows you to terminate execution and to provide an informative error message
indicating why execution is being terminated. We’ll illustrate this by testing if a
required argument is provided for a very simple user-defined function.

def ArgRequired(arg=None):
if arg is None:

raise ValueError, "You must specify a value."
else:

print "You entered:",arg

The Python user-defined function ArgRequired has one argument with a default
value of None.

The if statement tests the value of arg. A value of None means that no value
was provided. In this case, a ValueError exception is created with the raise
statement and execution is terminated. The output includes the type of exception
raised and any string provided on the raise statement. For this exception, the
output includes the line:

ValueError: You must specify a value.

Handling an Exception Without Terminating Execution

Sometimes exceptions reflect conditions that don’t preclude the completion of a job.
This can be the case when you are processing data that may contain invalid values or
are attempting to open files that are either corrupt or have an invalid format. You would

http://docs.python.org/tut/tut.html
http://docs.python.org/tut/tut.html


245

Best Practices

like to simply skip over the invalid data or file and continue to the next case or file.
Python allows you to do this with the try and except statements.

As an example, let’s suppose that you need to process all .sav files in a particular
directory. You build a list of them and loop through the list, attempting to open each
one. There’s no guarantee, however, that a file with a name ending in .sav is actually
an SPSS format file, so your attempt to open any given file may fail, generating an
exception. Following is a code sample that handles this:

for fname in savfilelist:
try:

spss.Submit("get file='" + dirname + "/" + fname + "'.")
<do something with the file>

except:
pass

The first statement in the try clause submits a GET command to SPSS to attempt
to open a file in the list of those that end with .sav.

If the file can be opened, control passes to the remainder of the statements in the
try clause that do the necessary processing.

If the file can’t be opened, an exception is raised and control passes to the except
clause. Since the file isn’t a valid SPSS data file, there’s no action to take. Thus,
the except clause contains only a pass statement. Execution of the loop
continues to the next file in the list.

User-Defined Functions That Return Error Codes

Functions in the spss module raise exceptions for errors encountered during execution
and make the associated error codes available. Perhaps you are dynamically building
command syntax to be passed to the Submit function, and because there are cases that
can’t be controlled for, the command syntax fails during execution. And perhaps this
happens within the context of a large production job, where you would simply like
to flag the problem and continue with the job. Let’s further suppose that you have a
Python user-defined function that builds the command syntax and calls the Submit
function. Following is an outline of how to handle the error, extract the error code, and
provide it as part of the returned value from the user-defined function.



246

Chapter 13

def BuildSyntax(args):

<Build the command syntax and store it to cmd.
Store information about this run to id.>

try:
spss.Submit(cmd)

except:
pass

return (id,spss.GetLastErrorLevel())

The Submit function is part of a try clause. If execution of the command syntax
fails, control passes to the except clause.

In the event of an exception, you should exit the function, returning information
that can be logged. The except clause is used only to prevent the exception from
terminating execution; thus, it contains only a pass statement.

The function returns a two-tuple, consisting of the value of id and the maximum
SPSS error level for the submitted SPSS commands. Using a tuple allows you to
return the error code separately from any other values that the function normally
returns.

The call to BuildSyntax might look something like:

id_info, errcode=BuildSyntax(args)
if errcode > 2:

<log an error>

On return, id_info will contain the value of id and errcode will contain the value
returned by spss.GetLastErrorLevel().

Differences from Error Handling in Sax Basic

For users familiar with programming in Sax Basic or Visual Basic, it’s worth pointing
out that Python doesn’t have the equivalent of On Error Resume Next. You can
certainly resume execution after an error by handling it with a try/except block,
as in:

try:
<statement>

except:
pass

but this has to be done for each statement where an error might occur.



247

Best Practices

Debugging Your Python Code

Two modes of operation are available for running Python code that interacts with
SPSS: enclosing your code in BEGIN PROGRAM-END PROGRAM blocks as part of
a command syntax job or running it from a Python IDE (Integrated Development
Environment). Both modes have features that facilitate debugging.

Using a Python IDE

When you develop your code in a Python IDE, you can test one or many lines of code
in the IDE interactive window and see immediate results, which is particularly useful if
you are new to Python and are still trying to learn the language. And the Python print
statement allows you to inspect the value of a variable or the result of an expression.

Most Python IDEs also provide debuggers that allow you to set breakpoints, step
through code line by line, and inspect variable values and object properties. Python
debuggers are powerful tools but have a non-trivial learning curve. If you’re new to
Python and don’t have a lot of experience working with debuggers, you can do pretty
well with print statements in the interactive window of an IDE.

To get started with the Python IDE approach, see “Using a Python IDE” on p. 228.
Because the SPSS-Python Integration Plug-In does not include a Python IDE, you’ll
have to obtain one yourself. Several are available, and a number of them are free. For
a link to information and reviews on available Python IDEs, see the topic “Getting
Started with Python” at http://www.python.org/about/gettingstarted/.

Benefits of Running Code from Program Blocks

Once you’ve installed the SPSS-Python Integration Plug-In, you can start developing
Python code within BEGIN PROGRAM-END PROGRAM blocks in a command syntax
job. Nothing else is required.

One of the benefits of running your code from a BEGIN PROGRAM-END PROGRAM

block is that output is directed to the Viewer if it is available. Although SPSS output
is also available when you are working with a Python IDE, the output in that case is
displayed in text form, and charts are not included.

From a program block, you can display the value of a Python variable or the result
of a Python expression by including a Python print statement in the block. The
print statement is executed when you run command syntax that includes the program
block, and the result is displayed in a log item in the SPSS Viewer.

http://www.python.org/about/gettingstarted/
http://www.python.org/about/gettingstarted/


248

Chapter 13

Another feature of running Python code from a program block is that Python
variables persist from one program block to another. This allows you to inspect
variable values as they existed at the end of a program block, as shown in the following:

BEGIN PROGRAM.
import spss
spss.Submit("GET FILE='c:/examples/data/Employee data.sav'.")
ordlist=[]
for i in range(spss.GetVariableCount()):

if spss.GetVariableMeasurementLevel(i) in ['ordinal']:
ordlist.append(spss.GetVariableName(i))

cmd="DESCRIPTIVES VARIABLES=%s." %(ordlist)
spss.Submit(cmd)
END PROGRAM.

The program block is supposed to create a list of ordinal variables in Employee
data.sav but will generate an SPSS error in its current form, which suggests that
there is a problem with the submitted DESCRIPTIVES command. If you didn’t spot
the problem right away, you would probably be inclined to check the value of cmd,
the string that specifies the DESCRIPTIVES command. To do this, you could add a
print cmd statement after the assignment of cmd, or you could simply create an
entirely new program block to check the value of cmd. The latter approach doesn’t
require that you rerun your code. It also has the advantage of keeping out of your
source code print statements that are used only for debugging the source code. The
additional program block might be:

BEGIN PROGRAM.
print cmd
END PROGRAM.

Running this program block after the original block results in the output:

DESCRIPTIVES VARIABLES=['educ', 'jobcat', 'minority'].

It is displayed in a log item in the Viewer. You now see that the problem is that you
provided a Python list for the SPSS variable list, when what you really wanted was
a string containing the list items, as in:

DESCRIPTIVES VARIABLES=educ jobcat minority.



249

Best Practices

The problem is solved by using the Python string method join, which creates a string
from a list by concatenating the elements of the list, using a specified string as the
separator between elements. In this case, we want each element to be separated by a
single space. The correct specification for cmd is:

cmd="DESCRIPTIVES VARIABLES=%s." %(" ".join(ordlist))

In addition to the above remarks, keep the following general considerations in mind:

Unit test Python user-defined functions and the Python code included in BEGIN
PROGRAM-END PROGRAM blocks. And try to keep functions and program blocks
small so they can be more easily tested.

Note that many errors that would be caught at compile time in a more traditional,
less dynamic language, will be caught at runtime in Python. For example, when
Python encounters a syntax error, it terminates execution and indicates the earliest
point in the line where the error was detected.





Chapter

14
Working with Variable Dictionary
Information

The spss module provides a number of functions for retrieving variable dictionary
information from the active dataset. It includes functions to retrieve:

The number of variables in the active dataset

Variable names

Variable labels

Display formats of variables

Measurement levels of variables

The variable type (numeric or string)

Functions in the spss module retrieve information for a specified variable using the
position of the variable in the dataset as the identifier, starting with 0 for the first
variable in file order. This is referred to as the index value of the variable.

Example

The function to retrieve the name of a particular variable is GetVariableName. It
requires a single argument, which is the index value of the variable to retrieve. This
simple example creates a dataset with two variables and uses GetVariableName
to retrieve their names.

251



252

Chapter 14

DATA LIST FREE /var1 var2.
BEGIN DATA
1 2 3 4
END DATA.
BEGIN PROGRAM.
import spss
print "The name of the first variable in file order is (var1): " \

+ spss.GetVariableName(0)
print "The name of the second variable in file order is (var2): " \

+ spss.GetVariableName(1)
END PROGRAM.

Example

Often, you’ll want to search through all of the variables in the active dataset to find
those with a particular set of properties. The function GetVariableCount returns
the number of variables in the active dataset, allowing you to loop through all of the
variables, as shown in the following example:

DATA LIST FREE /var1 var2 var3 var4.
BEGIN DATA
14 25 37 54
END DATA.
BEGIN PROGRAM.
import spss
for i in range(spss.GetVariableCount()):

print spss.GetVariableName(i)
END PROGRAM.

The Python function range creates a list of integers from 0 to one less than its
argument. The sample dataset used in this example has four variables, so the list is
[0,1,2,3]. The for loop then iterates over these four values.

The function GetVariableCount doesn’t take any arguments, but Python
still requires you to include a pair of parentheses on the function call, as in:
GetVariableCount().

For more information about the functions in the spss module that retrieve variable
dictionary information, see Appendix A on p. 361. Information about value labels,
user-missing values, variable attributes, and datafile attributes is most easily retrieved
with object-oriented methods, as described in “Using Object-Oriented Methods for
Retrieving Dictionary Information” on p. 258.



253

Working with Variable Dictionary Information

Summarizing Variables by Measurement Level

When doing exploratory analysis on a dataset, it can be useful to run FREQUENCIES

for the categorical variables and DESCRIPTIVES for the scale variables. This process
can be automated by using the GetVariableMeasurementLevel function from
the spss module to build separate lists of the categorical and scale variables. You
can then submit a FREQUENCIES command for the list of categorical variables and a
DESCRIPTIVES command for the list of scale variables, as shown in the following
example:

*python_summarize_by_level.sps.
BEGIN PROGRAM.
import spss
spss.Submit("GET FILE='c:/examples/data/Employee data.sav'.")
catlist=[]
scalist=[]
for i in range(spss.GetVariableCount()):

varName=spss.GetVariableName(i)
if spss.GetVariableMeasurementLevel(i) in ['nominal', 'ordinal']:

catlist.append(varName)
else:

scalist.append(varName)
if len(catlist):

categoricalVars = " ".join(catlist)
spss.Submit("FREQUENCIES " + categoricalVars + ".")

if len(scalist):
scaleVars = " ".join(scalist)
spss.Submit("DESCRIPTIVES " + scaleVars + ".")

END PROGRAM.

Two lists, catlist and scalist, are created to hold the names of any categorical and
scale variables, respectively. They are initialized to empty lists.

spss.GetVariableName(i) returns the name of the variable with the index
value i.

spss.GetVariableMeasurementLevel(i) returns the measurement level of
the variable with the index value i. It returns one of four strings: 'nominal',
'ordinal', 'scale', or 'unknown'. If the current variable is either nominal
or ordinal, it is added to the list of categorical variables; otherwise, it is added to
the list of scale variables. The Python append method is used to add elements to
the lists.



254

Chapter 14

Tests are performed to determine whether there are categorical or scale variables
before running a FREQUENCIES or DESCRIPTIVES command. For example, if
there are no categorical variables in the dataset, len(catlist) will be zero and
interpreted as false for the purpose of evaluating an if statement.

" ".join(catlist) uses the Python string method join to create a string
from the elements of catlist, with each element separated by a single space; and
likewise for " ".join(scalist).

The dataset used in this example contains categorical and scale variables, so both a
FREQUENCIES and a DESCRIPTIVES command will be submitted to SPSS. The
command strings passed to the Submit function are:

'FREQUENCIES gender educ jobcat minority.'

'DESCRIPTIVES id bdate salary salbegin jobtime prevexp.'

For more information on the GetVariableMeasurementLevel function, see
Appendix A on p. 361.

Listing Variables of a Specified Format

The GetVariableFormat function, from the spss module, returns a string
containing the display format for a specified variable—for example, F4, ADATE10,
DOLLAR8. Perhaps you need to find all variables of a particular format type. This is
best done with a Python user-defined function that takes a format as a parameter and
returns a list of variables with that format.

def VarsWithFormat(format):
"""Return a list of variables in the active dataset whose
display format begins with the specified string.
"""
varList=[]
for i in range(spss.GetVariableCount()):

if spss.GetVariableFormat(i).startswith(format.upper()):
varList.append(spss.GetVariableName(i))

return varList

VarsWithFormat is a Python user-defined function that requires a single
argument, format.



255

Working with Variable Dictionary Information

varList is created to hold the names of any variables in the active dataset whose
display format starts with the specified string. It is initialized to the empty list.

Since spss.GetVariableFormat(i) returns a string, you can invoke Python
string methods directly on its returned value. In this case, we use the Python string
method startswith to check if the string begins with the value passed in as the
format. The character portion of the format string is always returned as upper case,
so we first convert format to upper case with format.upper().

Example

As a concrete example, print a list of variables with a time format.

*python_list_time_vars.sps.
DATA LIST FREE

/numvar (F4) timevar1 (TIME5) stringvar (A2) timevar2 (TIME12.2).
BEGIN DATA
1 10:05 a 11:15:33.27
END DATA.

BEGIN PROGRAM.
import samplelib
print samplelib.VarsWithFormat("TIME")
END PROGRAM.

The DATA LIST command creates four variables, two of which have a time
format, and BEGIN DATA creates one sample case.

The BEGIN PROGRAM block starts with a statement to import the samplelib
module, which contains the definition for the VarsWithFormat function.

Note: To run this program block, you need to copy the module file samplelib.py
from \examples\python on the accompanying CD to your Python “site-packages”
directory, typically C:\Python24\Lib\site-packages. Because the samplelib
module uses functions in the spss module, it includes an import spss statement.

The result is:

['timevar1', 'timevar2']

For more information on the GetVariableFormat function, see Appendix A on p.
361.



256

Chapter 14

Checking If a Variable Exists

A common scenario is to run a particular block of command syntax only if a specific
variable exists in the dataset. For example, you are processing many datasets
containing employee records and want to split them by gender—if a gender variable
exists—to obtain separate statistics for the two gender groups. We will assume that if a
gender variable exists, it has the name gender, although it may be spelled in upper case
or mixed case. The following example illustrates the approach using a sample dataset:

*python_var_exists.sps.
BEGIN PROGRAM.
import spss
spss.Submit("GET FILE='c:/examples/data/Employee data.sav'.")
for i in range(spss.GetVariableCount()):

name=spss.GetVariableName(i)
if name.lower()=="gender":

spss.Submit(r"""
SORT CASES BY %s.
SPLIT FILE

LAYERED BY %s.
""" %(name,name))
break

END PROGRAM.

spss.GetVariableName(i) returns the name of the variable with the index
value i.

Python is case sensitive, so to ensure that you don’t overlook a gender variable
because of case issues, equality tests should be done using all upper case or
all lower case, as shown here. The Python string method lower converts the
associated string to lower case.

A triple-quoted string is used to pass a block of command syntax to SPSS using
the Submit function. The name of the gender variable is inserted into the
command block using string substitution. For more information, see “Dynamically
Specifying Command Syntax Using String Substitution” in Chapter 13 on p. 234.

The break statement terminates the loop if a gender variable is found.

To complicate matters, suppose some of your datasets have a gender variable with
an abbreviated name, such as gen or gndr, but the associated variable label always
contains the word gender. You would then want to test the variable label instead of the
variable name (we’ll assume that only a gender variable would have gender as part of
its label). This is easily done by using the GetVariableLabel function and replacing



257

Working with Variable Dictionary Information

name.lower()=="gender"

in the if statement with

"gender" in spss.GetVariableLabel(i).lower()

Since spss.GetVariableLabel(i) returns a string, you can invoke a Python string
method directly on its returned value, as shown above with the lower method.

For more information on the GetVariableName and GetVariableLabel

functions, see Appendix A on p. 361.

Creating Separate Lists of Numeric and String Variables

The GetVariableType function, from the spss module, returns an integer value of 0
for numeric variables or an integer equal to the defined length for string variables. You
can use this function to create separate lists of numeric variables and string variables in
the active dataset, as shown in the following example:

*python_list_by_type.sps.
BEGIN PROGRAM.
import spss
spss.Submit("GET FILE='c:/examples/data/Employee data.sav'.")
numericVars=[]
stringVars=[]
for i in range(spss.GetVariableCount()):

if spss.GetVariableType(i) == 0:
numericVars.append(spss.GetVariableName(i))

else:
stringVars.append(spss.GetVariableName(i))

print "String variables:"
print "\n".join(stringVars)
print "\nNumeric variables:"
print "\n".join(numericVars)
END PROGRAM.

The lists numericVars and stringVars are created to hold the names of the numeric
variables and string variables, respectively. They are initialized to empty lists.



258

Chapter 14

spss.GetVariableType(i) returns an integer representing the variable type
for the variable with the index value i. If the returned value is 0, then the variable
is numeric, so add it to the list of numeric variables; otherwise, add it to the list
of string variables.

The code "\n".join(stringVars) uses the Python string method join to
combine the items in stringVars into a string with each element separated by
"\n", which is the Python escape sequence for a line break. The result is that each
element is displayed on a separate line by the print statement.

For more information on the GetVariableType function, see Appendix A on p. 361.

Using Object-Oriented Methods for Retrieving Dictionary
Information

The spssaux module, a supplementary module available for download from SPSS
Developer Central at www.spss.com/devcentral, provides object-oriented methods
that simplify the task of retrieving variable dictionary information. You can retrieve
the same variable dictionary information available with the functions from the spss
module, but you can also retrieve:

Value label information

Definitions of user-missing values

Variable and datafile attributes

In addition, you have the option of retrieving information by variable name rather than
the variable’s index value in the dataset. You can also set many variable properties,
such as value labels, missing values, and measurement level.

Note: To run the examples in this section, you need to download the spssaux module
from SPSS Developer Central and save it to your Python “site-packages” directory,
typically C:\Python24\Lib\site-packages.



259

Working with Variable Dictionary Information

Getting Started with the VariableDict Class

The object-oriented methods for retrieving dictionary information are encapsulated in
the VariableDict class in the spssaux module. In order to use these methods, you
first create an instance of the VariableDict class and store it to a variable, as in:

varDict = spssaux.VariableDict()

When the argument to VariableDict is empty, as shown above, the instance will
contain information for all variables in the active dataset. Of course, you have to
include the statement import spssaux so that Python can load the functions and
classes in the spssaux module. Note that if you delete, rename, or reorder variables in
the active dataset, you should obtain a refreshed instance of the VariableDict class.

You can also call VariableDict with a list of variable names or a list of index
values for a set of variables. The resulting instance will then contain information for
just that subset of variables. To illustrate this, consider the variables in Employee
data.sav and an instance of VariableDict that contains the variables id, salary, and
jobcat. To create this instance from a list of variable names, use:

varDict = spssaux.VariableDict(['id','salary','jobcat'])

The same instance can be created from a list of variable index values, as in:

varDict = spssaux.VariableDict([0,5,4])

You should convince yourself that the index value 0 corresponds to the variable id, 5 to
the variable salary, and 4 to the variable jobcat. Remember that an index value of 0
corresponds to the first variable in file order.

The number of variables in the current instance of the class is available from the
numvars property, as in:

varDict.numvars

A Python list of variables in the current instance of the class is available from the
Variables method, as in:

varDict.Variables()

You may want to consider creating multiple instances of the VariableDict class,
each assigned to a different variable and each containing a particular subset of variables
that you need to work with.



260

Chapter 14

Note: You can select variables for an instance of VariableDict by variable
type ('numeric' or 'string'), by variable measurement level ('nominal',
'ordinal', 'scale', or 'unknown'), or by using a regular expression; and you
can specify any combination of these criteria. You can also specify these same
types of criteria for the Variables method in order to list a subset of the variables
in an existing instance. For more information on using regular expressions, see
“Using Regular Expressions to Select Variables” on p. 271. For more information
on selecting variables by variable type or variable level, include the statement
help(spssaux.VariableDict) in a program block, after having imported the
spssaux module.

Retrieving Variable Information

Once you have created an instance of the VariableDict class, you have a variety
of ways of retrieving variable dictionary information.

Looping through the variables in an instance. You can loop through the SPSS variables,
extracting information one variable at a time, by iterating over the instance of
VariableDict. For example:

varDict = spssaux.VariableDict()
for var in varDict:

print var, var.VariableName, "\t", var.VariableLabel

The Python variable varDict holds an instance of the VariableDict class for all
of the variables in the active dataset.

On each iteration of the loop, var is an object representing a different SPSS variable
in varDict and provides access to that variable’s dictionary information through
method calls. For example, var.VariableName calls the VariableName
method to retrieve the variable name for the SPSS variable represented by the
current value of var. And including var by itself returns the index value of the
current variable.

Note: A list of all available methods for the VariableDict class can be obtained
by including the statement help(spssaux.VariableDict) in a program block,
assuming that you have already imported the spssaux module.



261

Working with Variable Dictionary Information

Accessing information by variable name. You can retrieve information for any variable
in the current instance of VariableDict simply by specifying the variable name. For
example, to retrieve the measurement level for a variable named jobcat, use:

varDict['jobcat'].VariableLevel

Accessing information by a variable’s index within an instance. You can access
information for a particular variable using its index within an instance. When you call
VariableDict with an explicit variable list, the index within the instance is simply
the position of the variable in that list, starting from 0. For example, consider the
following instance based on Employee data.sav as the active dataset:

varDict = spssaux.VariableDict(['id','salary','jobcat'])

The index 0 in the instance refers to id, 1 refers to salary, and 2 refers to jobcat. The
code to retrieve, for example, the variable name for the variable with index 1 in the
instance is:

varDict[1].VariableName

The result, of course, is 'salary'. Notice that salary has an index value of 5 in the
associated dataset but an index of 1 in the instance. This is an important point; in
general, the variable’s index value in the dataset isn’t equal to its index in the instance.

It may be convenient to obtain the variable’s index value in the dataset from its
index in the instance. As an example, get the index value in the dataset of the variable
with index 2 in varDict. The code is:

varDict[2]

The result is 4, since the variable with index 2 in the instance is jobcat and it has an
index value of 4 in the dataset.

Accessing information by a variable’s index value in the dataset. You also have the option
of addressing variable properties by the index value in the dataset. This is done using
the index value as an argument to a method call. For example, to get the name of the
variable with the index value of 4 in the dataset, use:

varDict.VariableName(4)

For the dataset and instance used above, the result is 'jobcat'.



262

Chapter 14

Defining a List of Variables between Two Variables

Sometimes you cannot use references such as var1 TO xyz5; you have to actually
list all of the variables of interest. This task is most easily done using methods in
the VariableDict class. The following Python user-defined function takes two
variable names and returns a list of all variables in the active dataset that lie between
them. Optionally, you can pass the function an instance of the VariableDict class.
The result will then be the list of all variables in the instance that lie between the
two specified variables.

def VarsBetweenVars(var1,var2,varDict=None):
"""Return a list of variables in the active dataset that lie
between two specified variables. Include the two specified
variables in the return list. The variable specified by var1
should precede var2 in file order. var1 and var2 are strings.
varDict is an optional instance of the VariableDict class
containing a subset of variables in the active dataset. If
varDict is provided the result is limited to the variables
in the specified subset.
"""
if varDict is None:

varDict = spssaux.VariableDict()
indexList = sorted(varDict.Indexes())
varList = spssaux.GetVariableNamesList(indexList)
index1 = varList.index(var1)
index2 = varList.index(var2)
del varDict
return varList[index1:index2+1]

The name of the function is VarsBetweenVars and it requires the two arguments
var1 and var2. The argument varDict is optional with a default value of None.

In the case that no value is provided for the argument varDict, an instance of the
VariableDict class that contains information for all variables in the active
dataset is created. The Python variable varDict contains a reference to this
instance. Creating this instance is a relatively expensive operation, so the function
allows you to pass in a reference to an existing instance.

The Indexes method of the VariableDict class returns a list containing the
index value in the dataset for each variable in the current instance. The sorted
function sorts this list in ascending order.

spssaux.GetVariableNamesList(indexList) returns a list of names of the
variables specified by the index values in indexList. Since the index list is sorted,
the list of names will be in file order.



263

Working with Variable Dictionary Information

varList.index(var1) returns the index value, in varList, of the variable
passed in as the argument var1. Likewise, varList.index(var2) provides
the index value for var2.

Since varList contains a list of variables in file order, you can extract those
between var1 and var2 (inclusive) by taking the slice of varList between the index
for var1 and the index for var2, as in varList[index1:index2+1].

The local variable varDict is discarded at the completion of the function.

Example

As a concrete example, print the list of scale variables between bdate and jobtime in
Employee data.sav.

*python_vars_between_vars.sps.
BEGIN PROGRAM.
import spss, spssaux, samplelib_supp
spss.Submit("GET FILE='c:/examples/data/Employee data.sav'.")
dict=spssaux.VariableDict(variableLevel=["scale"])
print samplelib_supp.VarsBetweenVars("bdate","jobtime",dict)
END PROGRAM.

The BEGIN PROGRAM block starts with a statement to import the
samplelib_supp module, which contains the definition for the
VarsBetweenVars function. The import statement also includes the spssaux
module, since we’ll use the VariableDict class to create a dictionary with
just the scale variables.

The Python variable dict contains a reference to an instance of the VariableDict
class for the scale variables in the active dataset. The call to VarsBetweenVars
includes this instance of VariableDict.

Note: To run this program block, you need to copy the module file samplelib_supp.py
from \examples\python on the accompanying CD to your Python “site-packages”
directory, typically C:\Python24\Lib\site-packages. The samplelib_supp module
uses functions in the spssaux and viewer modules, so you will also need copies of
these modules in your “site-packages” directory. They are available for download from
SPSS Developer Central at www.spss.com/devcentral.



264

Chapter 14

Identifying Variables without Value Labels

The VariableDict class allows you to retrieve value label information through
the ValueLabels method. The following example shows how to obtain a list of
variables that do not have value labels:

*python_vars_no_value_labels.sps.
BEGIN PROGRAM.
import spss, spssaux
spss.Submit("GET FILE='c:/examples/data/Employee data.sav'.")
varDict = spssaux.VariableDict()
varList = [var.VariableName for var in varDict

if not var.ValueLabels]
print "List of variables without value labels:"
print "\n".join(varList)
END PROGRAM.

var.ValueLabels invokes the ValueLabels method for the variable
represented by var. It returns a Python dictionary containing value label
information for the specified variable. If there are no value labels for the variable,
the dictionary will be empty and var.ValueLabels will be interpreted as false
for the purpose of evaluating an if statement.

The Python variable varList contains the list of variables that do not have value
labels. Note: If you are not familiar with the method used here to create a
list, see the section “List Comprehensions” in the Python tutorial, available at
http://docs.python.org/tut/tut.html.

If you have PRINTBACK and MPRINT on, you’ll notice a number of OMS commands
in the Viewer log when you run this program block. The ValueLabels method
uses OMS to get value labels from the SPSS dictionary.

The method used above for finding variables without value labels can be quite
expensive when processing all of the variables in a large dictionary. In such cases, it
is better to work with an in-memory XML representation of the dictionary for the
active dataset. This is created by the CreateXPathDictionary function from the
spss module. Information can be retrieved with a variety of tools, including the
EvaluateXPath function from the spss module. In this example, we’ll utilize the
xml.sax module, a standard module distributed with Python that simplifies the task
of working with XML. The first step is to define a Python class to select the XML
elements and associated attributes of interest. Not surprisingly, the discussion that
follows assumes familiarity with classes in Python.

http://docs.python.org/tut/tut.html
http://docs.python.org/tut/tut.html


265

Working with Variable Dictionary Information

class valueLabelHandler(ContentHandler):
"""Create two sets: one listing all variable names and
the other listing variables with value labels"""
def __init__(self):

self.varset = set()
self.vallabelset = set()

def startElement(self, name, attr):
if name == u"variable":

self.varset.add(attr.getValue(u"name"))
elif name == u"valueLabelVariable":

self.vallabelset.add(attr.getValue(u"name"))

The job of selecting XML elements and attributes is accomplished with a content
handler class. You define a content handler by inheriting from the base class
ContentHandler that is provided with the xml.sax module. We’ll use the
name valueLabelHandler for our version of a content handler.

The __init__ method defines two attributes, varset and vallabelset, that will
be used to store the set of all variables in the dataset and the set of all variables
with value labels. The variables varset and vallabelset are defined as Python sets
and, as such, they support all of the usual set operations, such as intersections,
unions, and differences. In fact, the set of variables without value labels is just
the difference of the two sets varset and vallabelset.

The startElement method of the content handler processes every element in the
variable dictionary. In the present example, it selects the name of each variable in
the dictionary as well as the name of any variable that has associated value label
information and updates the two sets varset and vallabelset.

Specifying the elements and attributes of interest requires familiarity with the
schema for the XML representation of the SPSS dictionary. For example, you
need to know that variable names can be obtained from the name attribute of the
variable element, and variables with value labels can be identified simply by
retrieving the name attribute from each valueLabelVariable element.

Documentation for the dictionary schema is available in dictionary-1.0.htm,
located under \help\programmability\ in your SPSS application directory or
accessed by choosing the Programmability option from the Help menu (once you’ve



266

Chapter 14

installed the SPSS-Python Integration Plug-In). The PDF document Dictionary
schema overview, available from the same location, may also be helpful.

The strings specifying the element and attribute names are prefaced with a u,
which makes them Unicode strings. This ensures compatibility with the XML
representation of the SPSS dictionary, which is in Unicode.

Once you have defined a content handler, you define a Python function to parse the
XML, utilizing the content handler to retrieve and store the desired information.

def FindVarsWithoutValueLabels():
handler = valueLabelHandler()
tag = "D"+ str(random.uniform(0,1))
spss.CreateXPathDictionary(tag)

# Retrieve and parse the variable dictionary
xml.sax.parseString(spss.GetXmlUtf16(tag),handler)
spss.DeleteXPathHandle(tag)

# Print a list of variables in varset that aren't in vallabelset
# Convert from Unicode to the current character set
nolabelset = handler.varset.difference(handler.vallabelset)
encoding = locale.getlocale()[1]
if nolabelset:

print "The following variables have no value labels:"
print "\n".join([codecs.encode(v,encoding) for v in nolabelset])

else:
print "All variables in this dataset have at least one value label."

handler = valueLabelHandler() creates an instance of the
valueLabelHandler class and stores a reference to it in the Python variable
handler.

spss.CreateXPathDictionary(tag) creates an XML representation of the
dictionary for the active dataset. The argument tag defines an identifier used to
specify this dictionary in subsequent operations. The dictionary resides in an
in-memory workspace—referred to as the XML workspace—which can contain
procedure output and dictionaries, each with its own identifier. To avoid possible
conflicts with identifiers already in use, the identifier is constructed using the
string representation of a random number.

The parseString function does the work of parsing the XML, making use of the
content handler to select the desired information. The first argument is the XML to
be parsed, which is provided here by the GetXmlUtf16 function from the spss
module. It takes the identifier for the desired item in the XML workspace and



267

Working with Variable Dictionary Information

retrieves the item. The second argument is the handler to use—in this case, the
content handler defined by the valueLabelHandler class. At the completion of
the parseString function, the desired information is contained in the attributes
varset and vallabelset in the handler instance.

spss.DeleteXPathHandle(tag) deletes the XML dictionary item from the
XML workspace.

As mentioned above, the set of variables without value labels is simply the
difference between the sets varset and vallabelset. This is computed using the
difference method for Python sets and the result is stored to nolabelset.

The XML dictionary is represented in Unicode but the results of
FindVarsWithoutValueLabels will be displayed in the SPSS locale code
page. To make the output compatible with the current SPSS character set, you use
the encode method from the codecs module to convert from Unicode to the
SPSS locale code page before invoking any string operations. You can set and
display the SPSS locale using the SET LOCALE and SHOW LOCALE commands.

In order to make all of this work, you include both the function and the class in a Python
module along with the following set of import statements for the necessary modules:

from xml.sax.handler import ContentHandler
import xml.sax
import random, codecs, locale
import spss

Example

As a concrete example, determine the set of variables in Employee data.sav that do not
have value labels.

*python_vars_no_value_labels_xmlsax.sps.
BEGIN PROGRAM.
import spss, FindVarsUtility
spss.Submit("GET FILE='c:/examples/data/Employee data.sav'.")
FindVarsUtility.FindVarsWithoutValueLabels()
END PROGRAM.

The BEGIN PROGRAM block starts with a statement to import the
FindVarsUtility module, which contains the definition for the
FindVarsWithoutValueLabels function as well as the definition for the
valueLabelHandler class.



268

Chapter 14

Note: To run this program block, you need to copy the module file FindVarsUtility.py
from \examples\python on the accompanying CD to your Python “site-packages”
directory, which is typically C:\Python24\Lib\site-packages. If you are interested in
making use of the xml.sax module, the FindVarsUtility module may provide
a helpful starting point.

Retrieving Definitions of User-Missing Values

The VariableDict class allows you to retrieve definitions of user-missing values
through the MissingValues method. The following example shows how to retrieve
user-missing value definitions for each variable in the active dataset:

*python_user_missing_defs.sps.
BEGIN PROGRAM.
import spss, spssaux
spss.Submit("GET FILE='c:/examples/data/Employee data.sav'.")
varDict = spssaux.VariableDict()
for var in varDict:

missList = var.MissingValues
if missList:

res = missList
else:

res="None"
print var.VariableName, res

END PROGRAM.

The MissingValues method returns a string containing any user-missing values
defined for the current variable. The values are comma separated and string values
are quoted. If there are no missing values defined, an empty string is returned.

If the current variable, represented by var, has no user-missing value definitions,
then missList is an empty string. An empty string is equivalent to false when
tested on an if condition.

Retrieving Variable or Datafile Attributes

The VariableDict class allows you to retrieve variable attributes or datafile
attributes through the Attributes method.



269

Working with Variable Dictionary Information

Example

A number of variables in the sample dataset Employee data.sav have a variable
attribute named 'DemographicVars'. Create a list of these variables.

*python_var_attr.sps.
BEGIN PROGRAM.
import spss, spssaux
spss.Submit("GET FILE='c:/examples/data/Employee data.sav'.")
varDict = spssaux.VariableDict()
demvarList = [var.VariableName for var in varDict

if var.Attributes.has_key('DemographicVars')]
print "Variables with the attribute DemographicVars:"
print "\n".join(demvarList)
END PROGRAM.

var.Attributes invokes the Attributes method for the variable
represented by var. It returns a Python dictionary containing any variable
attributes for the specified variable. Each attribute, including each element
of an attribute array, is assigned a separate key equal to the name of the
attribute. The Python has_key method evaluates to true if there is a key in
the associated dictionary with the specified name. Putting this all together,
var.Attributes.has_key('DemographicVars') evaluates to true if the
variable represented by var has an attribute named 'DemographicVars'. Note
that the Attributes method is case sensitive to the attribute name, although
SPSS is not.

The Python variable demvarList contains the list of variables that have the specified
attribute. Note: If you are not familiar with the method used here to create a
list, see the section “List Comprehensions” in the Python tutorial, available at
http://docs.python.org/tut/tut.html.

Example

The sample dataset Employee data.sav has a number of datafile attributes. Retrieve the
value of the attribute named 'LastRevised'.

http://docs.python.org/tut/tut.html
http://docs.python.org/tut/tut.html


270

Chapter 14

*python_file_attr.sps.
BEGIN PROGRAM.
import spss, spssaux
spss.Submit("GET FILE='c:/examples/data/Employee data.sav'.")
varDict = spssaux.VariableDict(namelist=[0])
LastRevised = varDict.Attributes().get('LastRevised')
print "Dataset last revised on:", LastRevised
END PROGRAM.

varDict.Attributes() invokes the Attributes method without an
argument. In this mode, the method returns a Python dictionary containing any
datafile attributes for the active dataset. Each attribute, including each element
of an attribute array, is assigned a separate key equal to the name of the attribute.
The Python get method operates on a dictionary and returns the value associated
with the specified key.

Passing Information from Command Syntax to Python

Using datafile attributes and the same technique as the previous example, you can
essentially pass information from command syntax (residing outside of program
blocks) to program blocks that follow, as shown in the following example:

*python_pass_value_to_python.sps.
GET FILE='c:\examples\data\Employee data.sav'.
DATAFILE ATTRIBUTE ATTRIBUTE=pythonArg('cheese').
BEGIN PROGRAM.
import spss, spssaux
varDict = spssaux.VariableDict(namelist=[0])
product = varDict.Attributes().get('pythonArg')
print "Value passed to Python:",product
END PROGRAM.

Start by loading a dataset, which may or may not be the dataset that you ultimately
want to use for an analysis. Then add a datafile attribute whose value is the value
you want to make available to Python. If you have multiple values to pass, you can
use multiple attributes or an attribute array. The attribute(s) are then accessible
from program blocks that follow the DATAFILE ATTRIBUTE command(s). In



271

Working with Variable Dictionary Information

the current example, we’ve created a datafile attribute named pythonArg with
a value of 'cheese'.

The program block following the DATAFILE ATTRIBUTE command uses the
Attributes method of the VariableDict class (as in the preceding example) to
retrieve the value of pythonArg. The value is stored to the Python variable product.

Using Regular Expressions to Select Variables

Regular expressions define patterns of characters and enable complex string searches.
For example, using a regular expression, you could select all variables in the active
dataset whose names end in a digit. The VariableDict class allows you to use
regular expressions to select the subset of variables for an instance of the class or to
obtain a selected list of variables in an existing instance.

Example

The sample dataset demo.sav contains a number of variables whose names begin with
'own', such as owntv and ownvcr. We’ll use a regular expression to create an instance
of VariableDict that contains only variables with names beginning with 'own'.

*python_re_1.sps.
BEGIN PROGRAM.
import spss, spssaux
spss.Submit("GET FILE='c:/examples/data/demo.sav'.")
varDict = spssaux.VariableDict(pattern=r'own')
print "\n".join(varDict.Variables())
END PROGRAM.

The argument pattern is used to specify a regular expression when creating an
instance of the VariableDict class. A variable in the active dataset is included
in the instance only if its name matches the regular expression, starting from the
beginning of the name. In the current example, the regular expression is simply
the string 'own'.

Notice that the string for the regular expression is prefaced with r, indicating
that it will be treated as a raw string. It is a good idea to use raw strings for
regular expressions to avoid unintentional problems with backslashes. For more
information, see “Using Raw Strings in Python” in Chapter 13 on p. 237.

The Variables method of VariableDict creates a Python list of all variables
in the current instance.



272

Chapter 14

Example

In the following example, we create a sample dataset containing some variables with
names that end in a digit and create an instance of VariableDict containing all
variables in the dataset. We then show how to obtain the list of variables in the instance
whose names end in a digit.

*python_re_2.sps.
DATA LIST FREE

/id gender age incat region score1 score2 score3.
BEGIN DATA
1 0 35 3 10 85 76 63
END DATA.
BEGIN PROGRAM.
import spssaux
varDict = spssaux.VariableDict()
print "\n".join(varDict.Variables(pattern=r'.*\d$'))
END PROGRAM.

The argument pattern can be used with the Variables method of VariableDict
to create a list of variables in the instance whose names match the associated
regular expression. In this case, the regular expression is the string '.*\d$'.

If you are not familiar with the syntax of regular expressions, a good introduction
can be found in the section “Regular expression operations” in the Python Library
Reference, available at http://docs.python.org/lib/module-re.html. Briefly, the
character combination'.*' will match an arbitrary number of characters (other
than a line break), and '\d$' will match a single digit at the end of a string. The
combination '.*\d$' will then match any string that ends in a digit.

http://docs.python.org/lib/module-re.html
http://docs.python.org/lib/module-re.html
http://docs.python.org/lib/module-re.html


Chapter

15
Getting Case Data from the Active
Dataset

The SPSS-Python Integration Plug-In provides the ability to get case data from the
active dataset. This is accomplished using methods from the Cursor class, available
once you’ve imported the spss module. You can retrieve all cases at once or retrieve
cases one at a time in sequential order. You also have the option of limiting the data
retrieved to a subset of variables in the active dataset.

Using the Cursor Class
To retrieve case data from the active dataset, you first create an instance of the Cursor
class and store it to a variable, as in:

dataCursor = spss.Cursor()

Invoking Cursor without an argument, as shown here, indicates that case data should
be retrieved for all variables in the active dataset.

You can also call Cursor with a list of index values for a set of specific variables
to retrieve. Index values represent position in the active dataset, starting with 0 for
the first variable in file order. To illustrate this, consider the variables in Employee
data.sav and imagine that you want to retrieve case data for only the variables id and
salary, with index values of 0 and 5, respectively. The code to do this is:

dataCursor = spss.Cursor([0,5])

Example: Retrieving All Cases

Once you’ve created an instance of the Cursor class, you can retrieve data by
invoking methods on the instance. The method for retrieving all cases is fetchall, as
illustrated in this example.

273



274

Chapter 15

*python_get_all_cases.sps.
DATA LIST FREE /var1 (F) var2 (A2).
BEGIN DATA
11 ab
21 cd
31 ef
END DATA.
BEGIN PROGRAM.
import spss
dataCursor=spss.Cursor()
data=dataCursor.fetchall()
dataCursor.close()
print "Case data:", data
END PROGRAM.

The fetchall method doesn’t take any arguments, but Python still requires a pair
of parentheses when calling the method.

The Python variable data contains the data for all cases and all variables in the
active dataset.

dataCursor.close() closes the Cursor object. Once you’ve retrieved
the needed data, you should close the Cursor object since you can’t use the
spss.Submit function while a data cursor is open.

Result

Case data: ((11.0, 'ab'), (21.0, 'cd'), (31.0, 'ef'))

The case data is returned as a list of Python tuples. Each tuple represents the
data for one case, and the tuples are arranged in the same order as the cases in
the dataset. For example, the tuple containing the data for the first case in the
dataset is (11.0, 'ab'), the first tuple in the list. If you’re not familiar with the
concept of a Python tuple, it’s a lot like a Python list—it consists of a sequence of
addressable elements. The main difference is that you can’t change an element of
a tuple like you can for a list.

Each element in one of these tuples contains the data value for a specific variable.
When you invoke the Cursor class with spss.Cursor(), as in this example,
the elements correspond to the variables in file order.

Note: Be careful when using the fetchall method for large datasets, since Python
holds the retrieved data in memory. And in such cases, when you have finished
processing the data, consider deleting the variable used to store it. For example, if the
data are stored in the variable data, you can delete the variable with del data.



275

Getting Case Data from the Active Dataset

Example: Retrieving Cases Sequentially

You can retrieve cases one at a time in sequential order using the fetchone method.

*python_get_cases_sequentially.sps.
DATA LIST FREE /var1 (F) var2 (A2).
BEGIN DATA
11 ab
21 cd
END DATA.
BEGIN PROGRAM.
import spss
dataCursor=spss.Cursor()
print "First case:", dataCursor.fetchone()
print "Second case:", dataCursor.fetchone()
print "End of file reached:", dataCursor.fetchone()
dataCursor.close()
END PROGRAM.

Each call to fetchone retrieves the next case in the active dataset. The fetchone
method doesn’t take any arguments.

Result

First case: (11.0, 'ab')
Second case: (21.0, 'cd')
End of file reached: None

Calling fetchone after the last case has been read returns the Python data type None.

Example: Retrieving Data for a Selected Variable

As an example of retrieving data for a subset of variables, we’ll take the case of
a single variable.



276

Chapter 15

*python_get_one_variable.sps.
DATA LIST FREE /var1 (F) var2 (A2) var3 (F).
BEGIN DATA
11 ab 13
21 cd 23
31 ef 33
END DATA.
BEGIN PROGRAM.
import spss
dataCursor=spss.Cursor([2])
data=dataCursor.fetchall()
dataCursor.close()
print "Case data for one variable:", data
END PROGRAM.

The code spss.Cursor([2]) specifies that data will be returned for the single
variable with index value 2 in the active dataset. For the current example, this
corresponds to the variable var3.

Result

Case data for one variable: ((13.0,), (23.0,), (33.0,))

The data for each case is represented by a tuple containing a single element. Python
denotes such a tuple by following the value with a comma, as shown here.

Example: Missing Data

In this example, we create a dataset that includes both system-missing and user-missing
values.



277

Getting Case Data from the Active Dataset

*python_get_missing_data.sps.
DATA LIST LIST (',') /numVar (f) stringVar (a4).
BEGIN DATA
1,a
,b
3,,
9,d
END DATA.
MISSING VALUES numVar (9) stringVar (' ').
BEGIN PROGRAM.
import spss
dataCursor=spss.Cursor()
data=dataCursor.fetchall()
dataCursor.close()
print "Case data with missing values:\n", data
END PROGRAM.

Result

Case data with missing values:
((1.0, 'a '), (None, 'b '), (3.0, None), (None, 'd '))

When the data are read into Python, the missing values (system and user) are
assigned the Python data type None, which is used to signify the absence of a value.

For more information on the Cursor class and its methods, see Appendix A on
p. 361. If the data to retrieve include SPSS datetime values, using the spssdata
module, which properly converts SPSS datetime values to Python datetime objects, is
recommended. The spssdata module provides a number of other useful features,
such as the ability to specify a list of variable names, rather than indexes, when
retrieving a subset of variables, and addressing elements of tuples (containing case
data) by the name of the associated variable. For more information, see “Using the
spssdata Module” on p. 280.

Reducing a String to Minimum Length

For various reasons, we often find ourselves with strings of greater length than
necessary. The following Python user-defined function reduces the defined length
of a string variable to the length needed to accommodate the variable’s values. The
approach is to find the maximum number of characters (excluding trailing spaces) in
the case data for the variable, create a new string variable with a defined length equal



278

Chapter 15

to that many characters, drop the original variable, and rename the new string to the
original name.

def ReformatString(varList):
"""Reformat a set of SPSS string variables in the active dataset
so that the defined length of each variable is the minimum
required to accommodate the variable's values.
varList is a list of string variable names.
"""
allnames = [spss.GetVariableName(v)

for v in range(spss.GetVariableCount())]
indexList = [allnames.index(var) for var in varList]

for i in indexList:
if spss.GetVariableType(i)==0:

raise TypeError, \
"A numeric variable was provided where a string variable \

is required: " + allnames[i]

indexLength = spss.GetVariableCount()
for var in varList:

tempLength="T" + str(random.random())
spss.Submit("""
COMPUTE %(tempLength)s = LENGTH(RTRIM(%(var)s)).
SORT CASES BY %(tempLength)s (D).
""" %locals())
curObj=spss.Cursor([indexLength])
maxlen = int(curObj.fetchone()[0])
curObj.close()
tempName="T" + str(random.random())
spss.Submit("""
STRING %(tempName)s (A%(maxlen)s).
COMPUTE %(tempName)s = %(var)s.
APPLY DICTIONARY FROM=*

/SOURCE VARIABLES=%(var)s /TARGET VARIABLES=%(tempName)s.
MATCH FILES FILE=* /DROP %(var)s %(tempLength)s.
RENAME VARIABLE (%(tempName)s=%(var)s).
EXECUTE.
""" %locals())

ReformatString is a Python user-defined function that requires a single
argument, varList.

The Python variable indexList contains the list of variable indexes associated with
the variable names passed in as varList. It relies on the variable allnames, which
contains a list of the names of all variables in the active dataset in file order.

Note: If you’re not familiar with the method used here to create a list,
see the section “List Comprehensions” in the Python tutorial, available at
http://docs.python.org/tut/tut.html.

http://docs.python.org/tut/tut.html
http://docs.python.org/tut/tut.html


279

Getting Case Data from the Active Dataset

The GetVariableType method from the spss module is used to verify that all
of the variables passed into varList are string variables. If any numeric variables
are detected, a TypeError is raised and the execution is terminated.

The code random.random() generates a random number between 0 and 1. The
string representation of this number can be used to build the name of a temporary
variable that is virtually assured not to conflict with the name of any existing
variable. The Python module that contains the ReformatString function
includes a statement to import the random module, a standard module provided
with Python.

The first Submit function creates an SPSS variable containing the length of
the variable var, when all trailing blanks are removed. And sorting by this new
variable places the longest trimmed string value of var as the first case. String
substitution is used to insert the name of the variable containing the string lengths
and the name of var into the command strings for the COMPUTE and SORT CASES
commands. For more information, see “Dynamically Specifying Command Syntax
Using String Substitution” in Chapter 13 on p. 234.

The code curObj=spss.Cursor([indexLength]) creates an instance of the
Cursor class that provides access to just the data for the variable containing
the string lengths. The first case, for this variable, contains the maximum length
needed to accommodate the values in var. This value is retrieved with the
fetchone method and stored to the Python variable maxlen. The Cursor object
is then closed.

The second Submit function stores the original variable to a temporary variable,
applies the dictionary format from the original variable to the temporary one, drops
the original variable and the variable containing the string lengths, and renames
the temporary variable to the original variable’s name.

Example

As an example, create a sample dataset with string variables and call
ReformatString.



280

Chapter 15

*python_reformat_string.sps.
DATA LIST FREE /string1 (A10) string2 (A10) string3 (A10).
BEGIN DATA
a ab abc
a abcde ab
abcdef abcdefgh abcdefghi
END DATA.

BEGIN PROGRAM.
import samplelib
samplelib.ReformatString(['string1','string2','string3'])
END PROGRAM.

The BEGIN PROGRAM block starts with a statement to import the samplelib
module, which contains the definition for the ReformatString function.

The result is that string1 is resized to a length of 6; string2, to a length of 8; and
string3, to a length of 9.

Note: To run this program block, you need to copy the module file samplelib.py from
\examples\python on the accompanying CD to your Python “site-packages” directory,
typically C:\Python24\Lib\site-packages. Because the samplelib module uses
functions in the spss module, it includes an import spss statement.

Using the spssdata Module

The spssdata module, a supplementary module available for download from SPSS
Developer Central at www.spss.com/devcentral, builds on the functionality in the
Cursor class to provide a number of features that simplify the task of working with
case data.

You can specify a set of variables to retrieve using variable names instead of
index values.

Once data have been retrieved, you can access case data by variable name.

You can specify that SPSS datetime values be converted to Python datetime objects.

Note: To run the examples in this section, you need to download the spssdata
module and the accompanying namedtuple module from SPSS Developer
Central and save them to your Python “site-packages” directory, typically
C:\Python24\Lib\site-packages.



281

Getting Case Data from the Active Dataset

Getting Started with the Spssdata Class

To retrieve data, you first create an instance of the Spssdata class and store it to a
variable, as in:

data = spssdata.Spssdata()

Invoking Spssdata without any arguments, as shown here, specifies that case data
for all variables in the active dataset will be retrieved.

You can also call Spssdata with a set of variable names or variable index values,
expressed as a Python list or tuple. To illustrate this, consider the variables in Employee
data.sav and an instance of Spssdata used to retrieve only the variables salary and
educ. To create this instance from a set of variable names expressed as a tuple, use:

data = spssdata.Spssdata(indexes=('salary','educ'))

You can create the same instance from a set of variable index values using

data = spssdata.Spssdata(indexes=(5,3))

since the salary variable has an index value of 5 in the dataset, and the educ variable
has an index value of 3. Remember that an index value of 0 corresponds to the first
variable in file order.

You also have the option of calling Spssdata with a variable dictionary that’s
an instance of the VariableDict class from the spssaux module. Let’s say you
have such a dictionary stored to the variable varDict. You can create an instance of
Spssdata for the variables in varDict with:

data = spssdata.Spssdata(indexes=(varDict,))

Note: You can obtain general help for the Spssdata class by including the statement
help(spssdata.Spssdata) in a program block, assuming you’ve already imported
the spssdata module.

Retrieving Data

Once you have created an instance of the Spssdata class, you can retrieve data one
case at a time by iterating over the instance of Spssdata, as shown in this example.



282

Chapter 15

*python_using_Spssdata_class.sps.
DATA LIST FREE /sku (A8) qty (F5.0).
BEGIN DATA
10056789 123
10044509 278
10046887 212
END DATA.
BEGIN PROGRAM.
import spssdata
data=spssdata.Spssdata()
for row in data:

print row.sku, row.qty
data.close()
END PROGRAM.

The Spssdata class has a built-in iterator that sequentially retrieves cases from
the active dataset. Once you’ve created an instance of the class, you can loop
through the case data simply by iterating over the instance. In the current example,
the instance is stored in the Python variable data and the iteration is done with
a for loop. The Spssdata class also supports the fetchall method from
the Cursor class so that you can retrieve all cases with one call if that is more
convenient, as in data.fetchall().

Note: Be careful when using the fetchall method for large datasets, since
Python holds the retrieved data in memory. In such cases, when you have finished
processing the data, consider deleting the variable used to store it. For example,
if the data is stored in the variable allcases, you can delete the variable with
del allcases.

On each iteration of the loop, the variable row contains the data for a single case in
the form of a customized tuple called a named tuple. Like a tuple returned by
the Cursor class, a named tuple contains the data values for a single case. In
addition, a named tuple contains an attribute for each retrieved variable, with a
name equal to the variable name and with a value equal to the variable’s value for
the current case. In the current example, row.sku is the value of the variable
sku, and row.qty is the value of the variable qty for the current case. Since the
variable row is a tuple, you can also access elements by index; for example,
row[0] gives the value of sku and row[1] gives the value of qty.

Result

10056789 123.0
10044509 278.0
10046887 212.0



283

Getting Case Data from the Active Dataset

Handling SPSS Datetime Values

Dates and times in SPSS are represented internally as seconds. This means that
data retrieved for an SPSS datetime variable will simply be an integer representing
some number of seconds. SPSS knows how to correctly interpret this number when
performing datetime calculations and displaying datetime values, but without special
instructions, Python won’t. To illustrate this point, consider the following sample data
and code (using the Cursor class) to retrieve the data:

DATA LIST FREE /bdate (ADATE10).
BEGIN DATA
02/13/2006
END DATA.
BEGIN PROGRAM.
import spss
data=spss.Cursor()
row=data.fetchone()
print row[0]
data.close()
END PROGRAM.

The result from Python is 13359168000.0, which is a perfectly valid representation
of the date 02/13/2006 if you happen to know that SPSS stores dates internally as the
number of seconds since October 14, 1582. Fortunately, the Spssdata class will
do the necessary transformations for you and convert an SPSS datetime value into
a Python datetime object, which will render in a recognizable date format and can
be manipulated with functions from the Python datetime module (a built-in module
distributed with Python).

To convert values from an SPSS datetime variable to a Python datetime object, you
specify the variable name in the argument cvtDates to the Spssdata class (in addition
to specifying it in indexes), as shown in this example:

*python_convert_datetime_values.sps.
DATA LIST FREE /bdate (ADATE10).
BEGIN DATA
02/13/2006
END DATA.
BEGIN PROGRAM.
import spssdata
data=spssdata.Spssdata(indexes=('bdate',), cvtDates=('bdate',))
row=data.fetchone()
print row[0]
data.close()
END PROGRAM.



284

Chapter 15

The argument cvtDates to Spssdata takes a list or a tuple. A tuple containing a
single element is denoted by following the value with a comma, as shown here.
cvtDates also takes an instance of the VariableDict class from the spssaux
module, or the name “ALL.” If a variable specified in cvtDates does not have a
date format, it is not converted.

The Spssdata class supports the fetchone method from the Cursor class,
which is used here to retrieve the single case in the active dataset. For reference, it
also supports the fetchall method from the Cursor class.

The result from Python is 2006-02-13 00:00:00, which is the display of a
Python datetime object.

Using Case Data to Calculate a Simple Statistic

Once you have the case data in Python, you have the full computational power of the
Python language at your disposal, allowing you to apply custom algorithms to your
data. In this simple example, we calculate the mean salary by educational level for
the Employee data.sav dataset.

*python_stat_from_casedata.sps.
BEGIN PROGRAM.
import spss, spssdata
spss.Submit("GET FILE='c:/examples/data/Employee data.sav'.")
data=spssdata.Spssdata(indexes=('salary','educ'))
Counts={};Salaries={}
for item in data:

cat=int(item.educ)
Counts[cat]=Counts.get(cat,0) + 1
Salaries[cat]=Salaries.get(cat,0) + item.salary

print "educ mean salary\n"
for cat in sorted(Counts):

print " %2d $%6.0f" % (cat,Salaries[cat]/Counts[cat])
del data
END PROGRAM.

The code spssdata.Spssdata(indexes=('salary','educ')) creates an
instance of the Spssdata class to retrieve the two variables salary and educ.

On each iteration of the for loop, the Python variable item contains the data for
the current case, so that item.educ is the educational level and item.salary
is the salary.



285

Getting Case Data from the Active Dataset

The two Python dictionaries Counts and Salaries are built dynamically to have a
key for each educational level found in the case data. The value associated with
each key in Counts is the number of cases with that educational level, and the
value for each key in Salaries is the cumulative salary for that educational level.
The code Counts.get(cat,0) and Salaries.get(cat,0) get the dictionary
value associated with the key given by the value of cat. If the key doesn’t exist,
the expression evaluates to 0.

We’d like to display the results sorted by the educational levels present in the
data; in other words, sorted by the dictionary keys. A dictionary in Python is an
unordered set of key/value pairs, so we use sorted(Counts) to create a list of
the keys in Counts sorted in ascending order.





Chapter

16
Retrieving Output from SPSS
Commands

The spss module provides the means to retrieve the output produced by SPSS
commands from an in-memory workspace, allowing you to access command output in
a purely programmatic fashion.

Getting Started with the XML Workspace

To retrieve command output, you first route it via the Output Management System
(OMS) to an area in memory referred to as the XML workspace. There it resides in a
structure that conforms to the SPSS Output XML Schema (xml.spss.com/spss/oms).
Output is retrieved from this workspace with functions that employ XPath expressions.

For users familiar with XPath and desiring the greatest degree of control, the spss
module provides a function that evaluates an XPath expression against an output
item in the workspace and returns the result. For those unfamiliar with XPath, the
spssaux module, a supplementary module provided by SPSS, includes a function
for retrieving output from an XML workspace that constructs the appropriate XPath
expression for you based on a few simple inputs. For more information, see “Using
the spssaux Module” on p. 291.

The example in this section utilizes an explicit XPath expression. Constructing the
correct XPath expression (SPSS currently supports XPath 1.0) obviously requires
knowledge of the XPath language. If you’re not familiar with XPath, this isn’t
the place to start. In a nutshell, XPath is a language for finding information in an
XML document, and it requires a fair amount of practice. If you’re interested in
learning XPath, a good introduction is the XPath tutorial provided by W3Schools at
http://www.w3schools.com/xpath/.

287

http://www.w3schools.com/xpath/
http://www.w3schools.com/xpath/


288

Chapter 16

In addition to familiarity with XPath, constructing the correct XPath expression
requires an understanding of the structure of XML output produced by OMS, which
includes understanding the XML representation of a pivot table. You can find an
introduction, along with example XML, in the “SPSS Output XML Schema” topic
in the Help system.

Example

In this example, we’ll retrieve the mean value of a variable calculated from the
Descriptives procedure, making explicit use of the OMS command to route the output to
the XML workspace and using XPath to locate the desired value in the workspace.

*python_get_output_with_xpath.sps.
GET FILE='c:\examples\data\Employee data.sav'.
*Route output to the XML workspace.
OMS SELECT TABLES

/IF COMMANDS=['Descriptives'] SUBTYPES=['Descriptive Statistics']
/DESTINATION FORMAT=OXML XMLWORKSPACE='desc_table'
/TAG='desc_out'.

DESCRIPTIVES VARIABLES=salary, salbegin, jobtime, prevexp
/STATISTICS=MEAN.

OMSEND TAG='desc_out'.
*Get output from the XML workspace using XPath.
BEGIN PROGRAM.
import spss
handle='desc_table'
context="/outputTree"
xpath="//pivotTable[@subType='Descriptive Statistics'] \

/dimension[@axis='row'] \
/category[@varName='salary'] \
/dimension[@axis='column'] \
/category[@text='Mean'] \
/cell/@text"

result=spss.EvaluateXPath(handle,context,xpath)
print "The mean value of salary is:",result
spss.DeleteXPathHandle(handle)
END PROGRAM.

The OMS command is used to direct output from an SPSS command to the XML
workspace. The XMLWORKSPACE keyword on the DESTINATION subcommand,
along with FORMAT=OXML, specifies the XML workspace as the output destination.
It is a good practice to use the TAG subcommand, as done here, so as not to
interfere with any other OMS requests that may be operating. The identifiers used
for the COMMANDS and SUBTYPES keywords on the IF subcommand can be found
in the OMS Identifiers dialog box, available from the Utilities menu.



289

Retrieving Output from SPSS Commands

Note: The spssaux module provides a function for routing output to the XML
workspace that doesn’t involve the explicit use of the OMS command. For more
information, see “Using the spssaux Module” on p. 291.

The XMLWORKSPACE keyword is used to associate a name with this output in the
workspace. In the current example, output from the DESCRIPTIVES command
will be identified with the name desc_table. You can have many output items in
the XML workspace, each with its own unique name.

The OMSEND command terminates active OMS commands, causing the output to be
written to the specified destination—in this case, the XML workspace.

The BEGIN PROGRAM block extracts the mean value of salary from the XML
workspace and displays it in a log item in the Viewer. It uses the function
EvaluateXPath from the spss module. The function takes an explicit XPath
expression, evaluates it against a specified output item in the XML workspace,
and returns the result as a Python list.

The first argument to the EvaluateXPath function specifies the particular item in
the XML workspace (there can be many) to which an XPath expression will be
applied. This argument is referred to as the handle name for the output item and
is simply the name given on the XMLWORKSPACE keyword on the associated OMS
command. In this case, the handle name is desc_table.

The second argument to EvaluateXPath defines the XPath context for the
expression and should be set to "/outputTree" for items routed to the XML
workspace by the OMS command.

The third argument to EvaluateXPath specifies the remainder of the XPath
expression (the context is the first part) and must be quoted. Since XPath
expressions almost always contain quoted strings, you’ll need to use a different
quote type from that used to enclose the expression. For users familiar with
XSLT for OXML and accustomed to including a namespace prefix, note that
XPath expressions for the EvaluateXPath function should not contain the oms:
namespace prefix.

The XPath expression in this example is specified by the variable xpath. It is not
the minimal expression needed to select the mean value of salary but is used for
illustration purposes and serves to highlight the structure of the XML output.

//pivotTable[@subType='Descriptive Statistics'] selects the
Descriptives Statistics table.

/dimension[@axis='row']/category[@varName='salary'] selects the
row for salary.



290

Chapter 16

/dimension[@axis='column']/category[@text='Mean'] selects the
Mean column within this row, thus specifying a single cell in the pivot table.

/cell/@text selects the textual representation of the cell contents.

When you have finished with a particular output item, it is a good idea to delete it
from the XML workspace. This is done with the DeleteXPathHandle function,
whose single argument is the name of the handle associated with the item.

If you’re familiar with XPath, you might want to convince yourself that the mean value
of salary can also be selected with the following simpler XPath expression:

//category[@varName='salary']//category[@text='Mean']/cell/@text

Note: To the extent possible, construct your XPath expressions using
language-independent attributes, such as the variable name rather than the variable
label. That will help reduce the translation effort if you need to deploy your code in
multiple languages. Also consider factoring out language-dependent identifiers, such
as the name of a statistic, into constants. You can obtain the current language with the
SPSS command SHOW OLANG.

Writing XML Workspace Contents to a File

When writing and debugging XPath expressions, it is often useful to have a sample file
that shows the XML structure. This is provided by the function GetXmlUtf16 in the
spss module, as well as by an option on the OMS command. The following program
block recreates the XML workspace for the preceding example and writes the XML
associated with the handle desc_table to the file c:\temp\descriptives_table.xml.



291

Retrieving Output from SPSS Commands

*python_write_workspace_item.sps.
GET FILE='c:\examples\data\Employee data.sav'.
*Route output to the XML workspace.
OMS SELECT TABLES

/IF COMMANDS=['Descriptives'] SUBTYPES=['Descriptive Statistics']
/DESTINATION FORMAT=OXML XMLWORKSPACE='desc_table'
/TAG='desc_out'.

DESCRIPTIVES VARIABLES=salary, salbegin, jobtime, prevexp
/STATISTICS=MEAN.

OMSEND TAG='desc_out'.
*Write an item from the XML workspace to a file.
BEGIN PROGRAM.
import spss
spss.GetXmlUtf16('desc_table','c:/temp/descriptives_table.xml')
spss.DeleteXPathHandle('desc_table')
END PROGRAM.

The section of c:\temp\descriptives_table.xml that specifies the Descriptive Statistics
table, including the mean value of salary, is:

<pivotTable subType="Descriptive Statistics" text="Descriptive Statistics">
<dimension axis="row" displayLastCategory="true" text="Variables">

<category label="Current Salary" text="Current Salary"
varName="salary" variable="true">

<dimension axis="column" text="Statistics">
<category text="N">

<cell number="474" text="474"/>
</category>
<category text="Mean">

<cell decimals="2" format="dollar" number="34419.567510548"
text="$34,419.57"/>

</category>
</dimension>

</category>

Note: The output is written in Unicode (UTF-16), so you need an editor that can handle
this in order to display it correctly. Notepad is one such editor.

Using the spssaux Module

The spssaux module, a supplementary module available for download from SPSS
Developer Central at www.spss.com/devcentral, provides functions that simplify the
task of writing to and reading from the XML workspace. You can route output to the
XML workspace without the explicit use of the OMS command, and you can retrieve
values from the workspace without the explicit use of XPath.



292

Chapter 16

Note: To run the examples in this section, download the spssaux module from SPSS
Developer Central and save it to your Python “site-packages” directory, which is
typically C:\Python24\Lib\site-packages.

The spssaux module provides two functions for use with the XML workspace:

CreateXMLOutput takes a command string as input, creates an appropriate OMS
command to route output to the XML workspace, and submits both the OMS
command and the original command to SPSS.

GetValuesFromXMLWorkspace retrieves output from an XML workspace by
constructing the appropriate XPath expression from the inputs provided.

In addition, the spssaux module provides the function CreateDatasetOutput

to route procedure output to a dataset. The output can then be retrieved using the
Cursor class from the spss module or the Spssdata class from the spssdata
module. This presents an approach for retrieving procedure output without the use
of the XML workspace.

Example: Retrieving a Single Cell from a Table

The functions CreateXMLOutput and GetValuesFromXMLWorkspace are
designed to be used together. To illustrate this, we’ll redo the example from the
previous section that retrieves the mean value of salary in Employee data.sav from
output produced by the Descriptives procedure.



293

Retrieving Output from SPSS Commands

*python_get_table_cell.sps.
BEGIN PROGRAM.
import spss,spssaux
spss.Submit("GET FILE='c:/examples/data/Employee data.sav'.")
cmd="DESCRIPTIVES VARIABLES=salary,salbegin,jobtime,prevexp \

/STATISTICS=MEAN."
handle,failcode=spssaux.CreateXMLOutput(

cmd,
omsid="Descriptives",
visible=True)

# Call to GetValuesFromXMLWorkspace assumes that SPSS Output Labels
# are set to "Labels", not "Names".
result=spssaux.GetValuesFromXMLWorkspace(

handle,
tableSubtype="Descriptive Statistics",
rowCategory="Current Salary",
colCategory="Mean",
cellAttrib="text")

print "The mean salary is: ", result[0]
spss.DeleteXPathHandle(handle)
END PROGRAM.

As an aid to understanding the code, the CreateXMLOutput function is set to
display Viewer output (visible=True), which includes the Descriptive Statistics
table shown here.

Figure 16-1
Descriptive Statistics table

The call to CreateXMLOutput includes the following arguments:

cmd. The command, as a quoted string, to be submitted to SPSS. Output generated
by this command will be routed to the XML workspace.

omsid. The OMS identifier for the command whose output is to be captured. A
list of these identifiers can be found in the OMS Identifiers dialog box, available
from the Utilities menu. Note that by using the optional subtype argument (not
shown here), you can specify a particular table type or a list of table types to route
to the XML workspace.



294

Chapter 16

visible. This argument specifies whether output is directed to the Viewer, in
addition to being routed to the XML workspace. In the current example, visible
is set to true, so that Viewer output will be generated. However, by default,
CreateXMLOutput does not create output in the Viewer. A visual representation
of the output is useful when you’re developing code, since you can use the row and
column labels displayed in the output to specify a set of table cells to retrieve.

Note: You can obtain general help for the CreateXMLOutput function,
along with a complete list of available arguments, by including the statement
help(spssaux.CreateXMLOutput) in a program block.

CreateXMLOutput returns two parameters—a handle name for the output item in
the XML workspace and the maximum SPSS error level for the submitted SPSS
commands (0 if there were no SPSS errors).

The call to GetValuesFromXMLWorkspace includes the following arguments:

handle. This is the handle name of the output item from which you want to retrieve
values. When GetValuesFromXMLWorkspace is used in conjunction with
CreateXMLOutput, as is done here, this is the first of the two parameters returned
by CreateXMLOutput.

tableSubtype. This is the OMS table subtype identifier that specifies the table from
which to retrieve values. In the current example, this is the Descriptive Statistics
table. A list of these identifiers can be found in the OMS Identifiers dialog box,
available from the Utilities menu.

rowCategory. This specifies a particular row in an output table. The value used to
identify the row depends on the optional rowAttrib argument. When rowAttrib is
omitted, as is done here, rowCategory specifies the name of the row as displayed in
the Viewer. In the current example, this is Current Salary, assuming that SPSS
Output Labels are set to “Labels”, not “Names”.

colCategory. This specifies a particular column in an output table. The value used
to identify the column depends on the optional colAttrib argument. When colAttrib
is omitted, as is done here, colCategory specifies the name of the column as
displayed in the Viewer. In the current example, this is Mean.

cellAttrib. This argument allows you to specify the type of output to retrieve for the
selected table cell(s). In the current example, the mean value of salary is available
as a number in decimal form (cellAttrib="number") or formatted as dollars
and cents with a dollar sign (cellAttrib="text"). Specifying the value of
cellAttrib may require inspection of the output XML. This is available from the



295

Retrieving Output from SPSS Commands

GetXmlUtf16 function in the spss module. For more information, see “Writing
XML Workspace Contents to a File” on p. 290.

Note: You can obtain general help for the GetValuesFromXMLWorkspace
function, along with a complete list of available arguments, by including the
statement help(spssaux.GetValuesFromXMLWorkspace) in a program
block.

GetValuesFromXMLWorkspace returns the selected items as a Python list. You
can also obtain the XPath expression used to retrieve the items by specifying the
optional argument xpathExpr=True. In this case, the function returns a Python
two-tuple whose first element is the list of retrieved values and whose second
element is the XPath expression.

Some table structures cannot be accessed with the
GetValuesFromXMLWorkspace function and require the explicit
use of XPath expressions. In such cases, the XPath expression returned by
specifying xpathExpr=True (in GetValuesFromXMLWorkspace) may be a
helpful starting point.

Note: If you need to deploy your code in multiple languages, consider using
language-independent identifiers where possible, such as the variable name for
rowCategory rather than the variable label used in the current example. When using
a variable name for rowCategory or colCategory, you’ll also need to include the
rowAttrib or colAttrib argument and set it to varName. Also consider factoring out
language-dependent identifiers, such as the name of a statistic, into constants. You can
obtain the current language with the SPSS command SHOW OLANG.

Example: Retrieving a Column from a Table

In this example, we will retrieve a column from the Iteration History table for the
Quick Cluster procedure and check to see if the maximum number of iterations has
been reached.



296

Chapter 16

*python_get_table_column.sps.
BEGIN PROGRAM.
import spss, spssaux
spss.Submit("GET FILE='c:/examples/data/telco_extra.sav'.")
cmd = "QUICK CLUSTER\

zlnlong zlntoll zlnequi zlncard zlnwire zmultlin zvoice\
zpager zinterne zcallid zcallwai zforward zconfer zebill\
/MISSING=PAIRWISE\
/CRITERIA= CLUSTER(3) MXITER(10) CONVERGE(0)\
/METHOD=KMEANS(NOUPDATE)\
/PRINT INITIAL."

mxiter = 10
handle,failcode=spssaux.CreateXMLOutput(

cmd,
omsid="Quick Cluster",
subtype="Iteration History",
visible=True)

result=spssaux.GetValuesFromXMLWorkspace(
handle,
tableSubtype="Iteration History",
colCategory="1",
cellAttrib="text")

if len(result)==mxiter:
print "Maximum iterations reached for QUICK CLUSTER procedure"

spss.DeleteXPathHandle(handle)
END PROGRAM.

As an aid to understanding the code, the CreateXMLOutput function is set to display
Viewer output (visible=True), which includes the Iteration History table shown
here.

Figure 16-2
Iteration History table



297

Retrieving Output from SPSS Commands

The call to CreateXMLOutput includes the argument subtype. It limits the output
routed to the XML workspace to the specified table—in this case, the Iteration
History table. The value specified for this parameter should be the OMS table
subtype identifier for the desired table. A list of these identifiers can be found in
the OMS Identifiers dialog box, available from the Utilities menu.

By calling GetValuesFromXMLWorkspace with the argument colCategory,
but without the argument rowCategory, all rows for the specified column will be
returned. Referring to the Iteration History table shown above, the column labeled
1, under the Change in Cluster Centers heading, contains a row for each iteration
(as do the other two columns). The variable result will then be a list of the values
in this column, and the length of this list will be the number of iterations.

Example: Retrieving Output without the XML Workspace

In this example, we’ll use the CreateDatasetOutput function to route output from
a FREQUENCIES command to a dataset. We’ll then use the output to determine the
three most frequent values for a specified variable—in this example, the variable
jobtime from Employee data.sav.

*python_output_to_dataset.sps.
BEGIN PROGRAM.
import spss, spssaux, spssdata
spss.Submit(r"""
GET FILE='c:/examples/data/Employee data.sav'.
DATASET NAME employees.
""")
cmd = "FREQUENCIES jobtime /FORMAT=DFREQ."
datasetName, err = spssaux.CreateDatasetOutput(

cmd,
omsid='Frequencies',
subtype='Frequencies')

spss.Submit("DATASET ACTIVATE " + datasetName + ".")
data = spssdata.Spssdata()
print "Three most frequent values of jobtime:\n"
print"Months\tFrequency"
for i in range(3):

row=data.fetchone()
print str(row.Var2) + "\t\t" + str(int(row.Frequency))

data.close()
END PROGRAM.

As a guide to understanding the code, a portion of the output dataset is shown here.



298

Chapter 16

Figure 16-3
Resulting dataset from CreateDatasetOutput

In order to preserve the active dataset, the CreateDatasetOutput function
requires it to have a dataset name. If the active dataset doesn’t have a name, it is
assigned one. Here, we’ve simply assigned the name employees to the active
dataset.

The call to CreateDatasetOutput includes the following arguments:

cmd. The command, as a quoted string, to be submitted to SPSS. Output generated
by this command will be routed to a new dataset.

omsid. The OMS identifier for the command whose output is to be captured. A
list of these identifiers can be found in the OMS Identifiers dialog box, available
from the Utilities menu.

subtype. This is the OMS table subtype identifier for the desired table. In the
current example, this is the Frequencies table. Like the values for omsid, these
identifiers are available from the OMS Identifiers dialog box.

Note: You can obtain general help for the CreateDatasetOutput function,
along with a complete list of available arguments, by including the statement
help(spssaux.CreateDatasetOutput) in a program block.

CreateDatasetOutput returns two parameters—the name of the dataset
containing the output and the maximum SPSS error level for the submitted SPSS
commands (0 if there were no SPSS errors).

Once you have called CreateDatasetOutput, you need to activate the
output dataset before you can retrieve any data from it. In this example, data is
retrieved using an instance of the Spssdata class from the spssdata module, a



299

Retrieving Output from SPSS Commands

supplementary module that provides a number of features that simplify the task of
working with case data. The instance is stored to the Python variable data.

Using /FORMAT=DFREQ for the FREQUENCIES command produces output where
categories are sorted in descending order of frequency. Obtaining the three most
frequent values simply requires retrieving the first three cases from the output
dataset.

Cases are retrieved one at a time in sequential order using the fetchone method,
as in data.fetchone(). On each iteration of the for loop, row contains the
data for a single case. Referring to the portion of the output dataset shown in the
previous figure, Var2 contains the values for jobtime and Frequency contains the
frequencies of these values. You access the value for a particular variable within a
case by specifying the variable name, as in row.Var2 or row.Frequency.

Note: In addition to the spssaux module, this example uses the spssdata module,
available for download from SPSS Developer Central at www.spss.com/devcentral.
Once you have downloaded the module, save it to your Python “site-packages”
directory, which is typically C:\Python24\Lib\site-packages. For more information on
working with the Spssdata class, see “Getting Started with the Spssdata Class”
on p. 281.





Chapter

17
Creating, Modifying, and Saving
Viewer Contents

The viewer module, a supplementary module available for download from SPSS
Developer Central at www.spss.com/devcentral, provides programmatic access to the
SPSS Viewer from Python via OLE automation. This capability is available only when
working in local mode and does not provide access to the Draft Viewer. That said,
it includes features to:

Save, close, and export Viewer contents.

Modify pivot tables (change column or row labels, make totals bold, add footnotes,
change fonts or colors) beyond the formatting available in the general TableLook
facility.

Create a new pivot table in the Viewer.

Tasks such as saving the Viewer contents and creating a pivot table are accomplished
using methods in the viewer module that call the necessary OLE automation
interfaces for you. Modifying items in the Viewer, however, requires explicit use of the
SPSS OLE automation interfaces. The example on “Modifying Pivot Tables” on p.
307 illustrates some of the OLE properties and methods needed to modify pivot tables.

For information on OLE automation in SPSS, see the SPSS Base User’s Guide or
the SPSS scripting and automation topics in the Help system. The examples presented
in those sources use the Sax Basic language but the object methods and properties used
are part of SPSS OLE automation and are not specific to Sax Basic.

If you are familiar with scripting in Sax Basic, the transition to OLE automation
with Python is relatively simple, but there are a few differences. For more information,
see “Migrating Sax Basic Scripts to Python” in Chapter 18 on p. 321.

If you use the PythonWin IDE (a freely available IDE for working with Python
on Windows), you can obtain a listing of the available OLE automation methods by
choosing the COM Browser option from the Tools menu (OLE automation methods are

301



302

Chapter 17

also referred to as COM methods). The methods are listed in the SPSS Type Library
and SPSS Pivot Table Type Library folders under the Registered Type Libraries folder.
A listing of the COM methods is also available from any COM-aware software,
such as Visual Studio or the Visual Basic environment accessed from any Microsoft
Office application.

Note: To run the examples in this section, you need to download the viewer
module from SPSS Developer Central and save it to your Python “site-packages”
directory, which is typically C:\Python24\Lib\site-packages. You’ll also need
the two publicly available modules (not provided by SPSS)—pythoncom

and win32com.client—that enable OLE automation with Python.
These are installed with the pywin32 package for Python 2.4, available at
http://sourceforge.net/projects/pywin32 (for example, pywin32-205.win32-py2.4.exe
from that site). This package should be installed to your “site packages” directory. As
an added benefit, it includes installation of the PythonWin IDE.

Getting Started with the viewer Module
As an introduction to the viewer module, we will show a simple example of both
saving the contents of the designated (current) Viewer window to an external file
and exporting the contents to a Word file.

*python_viewer_save.sps.
BEGIN PROGRAM.
import spss,viewer,sys
spss.Submit(r"""
GET FILE='c:/examples/data/Employee data.sav'.
DESCRIPTIVES ALL.
""")
spssappObj=viewer.spssapp()
try:

actualName=spssappObj.SaveDesignatedOutput("c:/temp/myoutput.spo")
except:

print sys.exc_info()[1]
else:

spssappObj.ExportDesignatedOutput(\
"c:/temp/myoutput.doc",format="Word")

spssappObj.CloseDesignatedOutput()
END PROGRAM.

The program block utilizes the spss and viewer modules, as well as the built-in
module sys (used here to extract information about an exception), so it includes
the statement import spss,viewer,sys.

http://sourceforge.net/projects/pywin32
http://sourceforge.net/projects/pywin32


303

Creating, Modifying, and Saving Viewer Contents

To access the Viewer, you first create an instance of the spssapp
class from the viewer module and assign it to a variable, as in
spssappObj=viewer.spssapp(). The variable spssappObj contains a
reference to the SPSS Application object, which enables access to the contents
of the Viewer windows.

The SaveDesignatedOutput method of the spssapp class saves the designated
Viewer window to the specified file. If the file already exists, the name is modified
to include a datetime stamp. The method returns the actual name used and renames
the designated output window to this name.

If the save attempt fails for any reason, the except clause is invoked.
sys.exc_info() returns a tuple of three values that provide information about
the current exception. The value with an index of 1 contains the most descriptive
information.

If the save is successful, the else clause is executed. The else clause calls the
ExportDesignatedOutput method to export the contents of the designated
Viewer to the specified file in the specified format. You can export to the
following formats: HTML (default), text, Excel, Word, or PowerPoint. For
more information, along with a complete list of available arguments, include the
statement help(viewer.ExportDesignatedOutput) in a program block.

The CloseDesignatedOutput method closes the designated Viewer window
and opens (designates) a new one.

Persistence of Objects

This section describes issues, related to the persistence of objects, that are important to
be aware of when working with the viewer module.

Reference to the Designated Viewer Window

Working with the designated Viewer window requires having an object reference
to it. This is provided by the GetDesignatedOutput method, from the viewer
module. The SaveDesignatedOutput, ExportDesignatedOutput, and
CloseDesignatedOutput methods used in the previous example take care of
calling this method for you.

When you explicitly call GetDesignatedOutput to get a reference to the
designated Viewer—for example, when you want to modify a pivot table—you
typically store the reference to a variable for later use. If a different window becomes



304

Chapter 17

the designated one and you want to access the new window’s contents, you’ll have
to call GetDesignatedOutput again, since the stored reference provides access
to the original window, not the new one.

Working with Multiple Program Blocks

Sometimes you may have occasion to create a command syntax job that contains
more than one BEGIN PROGRAM block. A subtlety in the way that OLE automation
works, however, requires that each program block be properly initialized before OLE
automation methods will work in that block. This is done automatically when you
create an instance of the spssapp class or call any of the methods in that class, but
it is not done for you by other classes in the viewer module. To work with OLE
automation in subsequent program blocks, create a new instance of spssapp with
something like spssappObj=viewer.spssapp(). This is not necessary if the code
in the subsequent program block calls a method from the spssapp class before calling
any from another class in the viewer module.

Creating a Custom Pivot Table
The PivotTable class in the viewer module enables you to programmatically
create and populate a new pivot table in the Viewer, from Python. This is particularly
useful if you want to perform custom calculations in Python—perhaps using case
data retrieved from the active dataset—and present the results in the SPSS Viewer in
table form. Note that the tables created by the PivotTable class are not subject to
manipulation by OMS.

Note: In order to use the PivotTable class, you will need to run
the utility program makepy.py, located in the client subdirectory in
which you installed the win32com.client module—for example,
C:\Python24\Lib\site-packages\win32com\client\makepy.py. If you use the PythonWin
IDE, you can launch makepy.py by choosing the COM Makepy utility option from the
Tools menu. Once the makepy utility is launched, select the SPSS Pivot Table Type
Library and click OK. Repeat for the SPSS Type Library. You need to run the utility
only once for each library.

Example

In this example, we will create and populate a simple pivot table.



305

Creating, Modifying, and Saving Viewer Contents

*python_create_pivot_table.sps.
BEGIN PROGRAM.
import viewer
desOut=viewer.spssapp().GetDesignatedOutput()
ptable=viewer.PivotTable(

outlinetitle='An outline title',
tabletitle='A title for this table',
caption='A caption for this table',
rowdim='Rows',
rowlabels=['a','b','','d'],
coldim='Columns',
collabels=['col1','col2'],
cells=[(1,2),(3,4),(5,6),(7,8)])

ptable.insert(desOut)
END PROGRAM.

From the previous example, we know that viewer.spssapp() creates an
instance of the spssapp class, which then contains a reference to the SPSS
application object. From this instance, the GetDesignatedOutput method is
called. It gets a reference to the designated Viewer window, a necessary first step
to creating or manipulating items in the Viewer.

The PivotTable class takes a set of arguments that specify a pivot table. When
the class is instantiated, these arguments are used to build an internal representation
(held in class attributes) of the pivot table. The action of inserting the pivot table
into the designated Viewer window is done by the insert method. In the current
example, the PivotTable class is instantiated with the following arguments:

outlinetitle. The title that appears in the outline pane of the Viewer.

tabletitle. The title that appears with the table. If omitted, the outline title is used.

caption. An optional table caption.

rowdim. An optional label for the row dimension.

rowlabels. An optional list of string values to label the rows.

coldim. An optional label for the column dimension.

collabels. An optional list of string values to label the columns.

cells. This argument specifies the values for the cells of the pivot table. It consists
of a sequence of items, each of which contains the contents of a row in the table.
In the current example, the entire sequence is specified as a Python list and each
row is specified as a tuple. In general, both the entire sequence as well as the item
for each row can be a list or a tuple.



306

Chapter 17

Note: You can obtain general help for the PivotTable class, along with
detailed specifications for the available arguments, by including the statement
help(viewer.PivotTable) in a program block. In particular, one of the optional
arguments allows you to specify a TableLook to apply.

Result

Figure 17-1
Sample pivot table created with the viewer module

Example

In this example, we will create and populate a one-dimensional pivot table.

*python_create_1D_pivot_table.sps.
BEGIN PROGRAM.
import viewer
desOut=viewer.spssapp().GetDesignatedOutput()
ptable=viewer.PivotTable(

outlinetitle='A one-dimensional table',
rowlabels=['a','b','c','d'],
collabels=['Column'],
cells=[1,2,3,4])

ptable.insert(desOut)
END PROGRAM.

To specify the cells for a table with only one column, you include the values in a
list or tuple, as in cells=[1,2,3,4].

Note: This example omits many of the optional arguments for the PivotTable class
discussed in the previous example.



307

Creating, Modifying, and Saving Viewer Contents

Result

Figure 17-2
Sample 1-D pivot table created with the viewer module

Modifying Pivot Tables

The spssapp class in the viewer module provides access to the SPSS application
object, enabling you to modify items in the Viewer. This requires the explicit use
of SPSS OLE automation objects. We will illustrate this capability with a Python
user-defined function that changes the text style of specified column labels to bold
for a chosen set of pivot tables.



308

Chapter 17

def MakeColLabelBold(collabel,itemlabel):
"""Change all column labels that match a specified string
to bold, and make this change for all pivot tables whose
item label (title) matches a specified string.
collabel is the string that specifies the column label
to modify; for example "Total".
itemlabel is the string that specifies the item label (title)
of the pivot tables to modify; for example "Coefficients".
"""
spssappObj = viewer.spssapp()
objItems = spssappObj.GetDesignatedOutput().Items
for i in range(objItems.Count):

objItem = objItems.GetItem(i)
if objItem.SPSSType == 5 and objItem.Label == itemlabel:

objPivotTable = objItem.Activate()
try:

objColumnLabels = objPivotTable.ColumnLabelArray()
for j in range(objColumnLabels.NumColumns):

for k in range(objColumnLabels.NumRows):
if objColumnLabels.ValueAt(k,j) == collabel:

objColumnLabels.SelectLabelAt(k,j)
try:

objPivotTable.TextStyle=2
except:

pass
finally:

objItem.Deactivate()

MakeColLabelBold is a Python user-defined function that requires two
arguments, collabel and itemlabel.

The code spssappObj = viewer.spssapp() creates an instance of the
spssapp class and assigns it to the variable spssappObj.

The GetDesignatedOutput method of the spssapp class returns a reference to
the designated (current) Viewer window. This method is a wrapper for the OLE
automation method GetDesignatedOutputDoc that provides some necessary
initialization. Other than GetDesignatedOutput, the methods and properties
used in MakeColLabelBold belong to SPSS OLE automation objects.

The Items property contains a collection of all items in the designated output
document (Viewer). You have to access this collection before you can access
individual output items, such as pivot tables. The Python variable objItems
contains a reference to this collection object.

The outermost for loop iterates over all of the items in the designated Viewer.
Each item is accessed using the GetItem method and tested to see if it is a pivot
table (type 5) and if the object’s label (table title for a pivot table) matches the



309

Creating, Modifying, and Saving Viewer Contents

string passed in as the argument itemlabel. If the test expression evaluates to true,
the item is activated using the Activate method.

Whenever you activate an object and intend to deactivate it when you are done, use
a try:…finally: block, as shown here, to ensure that if an exception is raised,
the Deactivate method is always called. The try clause contains all of the
code to execute against the object and the finally clause calls the Deactivate
method.

The ColumnLabelArray method obtains a reference to the Column Labels object.
This object is a collection of column labels contained in the pivot table object.

The inner for loops indexed by j and k iterate through the elements in the Column
Labels object. The ValueAt method is used to access the value of a specified
column label. If the value matches the string passed in as the argument collabel it
is selected using the SelectLabelAt method.

The inner try clause is executed once for each pivot table whose
label (title) matches the value specified in itemlabel. The code
objPivotTable.TextStyle=2 sets the text style property of all currently
selected cells to 2 (the value for bold type). An exception occurs when attempting
to set the TextStyle property if there are no selected cells, meaning that no
column labels in the current pivot table match the specified string. In that case,
control passes to the except clause. Since there’s no action to take, the clause
contains only a pass statement.

Example

As an example, we will generate output from the DESCRIPTIVES procedure and
call MakeColLabelBold to change the column label Sum to bold in the Descriptive
Statistics table.



310

Chapter 17

*python_modify_pivot_table.sps.
BEGIN PROGRAM.
import spss,samplelib_supp
spss.Submit(r"""
GET FILE='c:/examples/data/Employee data.sav'.
DESCRIPTIVES

VARIABLES=salary,salbegin,jobtime,prevexp
/STATISTICS=MEAN SUM STDDEV MIN MAX.

""")
samplelib_supp.MakeColLabelBold("Sum","Descriptive Statistics")
END PROGRAM.

The BEGIN PROGRAM block starts with a statement to import the
samplelib_supp module, which contains the definition for the
MakeColLabelBold function.

Note: To run this program block, you need to copy the module file
samplelib_supp.py from \examples\python on the accompanying CD to your
Python “site-packages” directory, typically C:\Python24\Lib\site-packages.
The samplelib_supp module uses functions in the spssaux and viewer

modules, so you will also need copies of these modules in your “site-packages”
directory. They are available for download from SPSS Developer Central at
www.spss.com/devcentral.

Creating a Text Block

The ViewerText class in the viewer module enables you to programmatically create
and populate a Title item in the Viewer from Python. This is an alternative to the
default behavior of displaying output from Python in log items. Note that the Title item
created by the ViewerText class is not subject to manipulation by OMS. In addition,
the ViewerText class requires SPSS release 14.0.2 or later.

Example

In this example, we will create and populate a Title item in the Viewer.



311

Creating, Modifying, and Saving Viewer Contents

*python_create_text_block.sps.
BEGIN PROGRAM.
import spss, viewer
app = viewer.spssapp()
textitem = viewer.ViewerText(outlinetitle="Outline item",

text="Text from Python")
textitem.insert(app.GetDesignatedOutput())
END PROGRAM.

Creating a Title item is a two-step process. You first instantiate the ViewerText
class with arguments that specify the Title item. The action of inserting the item
into the designated Viewer window is then done by calling the insert method.

The argument outlinetitle specifies the title that appears in the outline pane of the
Viewer; and the argument text specifies the text to insert into the Title item.

The insert method requires a reference to the designated (current) Viewer
window. This is provided by the GetDesignatedOutput method of the
spssapp class. In this example, app = viewer.spssapp() creates an instance
of the spssapp class and assigns it to the variable app.

Note: You can obtain general help for the ViewerText class, along with
detailed specifications for the available arguments, by including the statement
help(viewer.ViewerText) in a program block.

Result

Figure 17-3
Sample text block created with the viewer module



312

Chapter 17

Using the viewer Module from a Python IDE

The viewer module is designed for optional use with a Python IDE (Integrated
Development Environment). This allows you to develop and test code that operates on
Viewer objects while still taking full advantage of the benefits that IDEs have to offer.
The steps to enable this are as follows:

E Start up SPSS as you normally would.

E From a Python IDE, create an instance of the spssapp class with the argument
standalone set to true, as in:

import viewer
spssappObj=viewer.spssapp(standalone=True)

With standalone=True, the spssapp instance attaches to the SPSS instance that
you started up manually, as opposed to the SPSS instance that is automatically created
when you run import spss from a Python IDE (an instance of SPSS that has no
Viewer). Subsequent OLE automation code run from the IDE will act on the objects
in the designated Viewer. Note, however, that in this mode of operation output from
SPSS commands submitted from Python is not directed to the Viewer but rather to the
IDE’s output window. In this regard, the mode with standalone=True is intended
primarily for testing code that manipulates Viewer objects. When the code is ready for
use, it should be included in a BEGIN PROGRAM block.

Note: Although the mode with standalone=True is primarily intended for use
with a Python IDE, it can be used with any separate Python process, like the Python
interpreter.



Chapter

18
Tips on Migrating Command
Syntax, Macro, and Scripting Jobs
to Python

Exploiting the power that the SPSS-Python Integration Plug-In offers may mean
converting an existing command syntax job, macro, or Sax Basic script to Python. This
is particularly straightforward for command syntax jobs, since you can run SPSS
command syntax from Python using a function from the spss module (available once
you install the plug-in). Converting macros and Sax Basic scripts is more complicated,
since you need to translate from either the macro language or Sax Basic to Python,
but there are some simple rules that facilitate the conversion. This chapter provides a
concrete example for each type of conversion and any general rules that apply.

Migrating Command Syntax Jobs to Python

Converting a command syntax job to run from Python allows you to control the
execution flow based on variable dictionary information, case data, procedure output,
or error-level return codes. As an example, consider the following simple syntax job
that reads a file, creates a split on gender, and uses DESCRIPTIVES to create summary
statistics.

GET FILE="c:\examples\data\Employee data.sav".
SORT CASES BY gender.
SPLIT FILE

LAYERED BY gender.
DESCRIPTIVES

VARIABLES=salary salbegin jobtime prevexp
/STATISTICS=MEAN STDDEV MIN MAX.

SPLIT FILE OFF.

313



314

Chapter 18

You convert a block of command syntax to run from Python simply by wrapping the
block in triple quotes and including it as the argument to the Submit function in the
spss module. For the current example, this looks like:

spss.Submit(r"""
GET FILE='c:/examples/data/Employee data.sav'.
SORT CASES BY gender.
SPLIT FILE

LAYERED BY gender.
DESCRIPTIVES

VARIABLES=salary salbegin jobtime prevexp
/STATISTICS=MEAN STDDEV MIN MAX.

SPLIT FILE OFF.
""")

The Submit function takes a string argument containing SPSS command syntax
and submits the syntax to SPSS for processing. By wrapping the command syntax
in triple quotes, you can specify blocks of SPSS commands on multiple lines in
the way that you might normally write command syntax. You can use either triple
single quotes or triple double quotes, but you must use the same type (single or
double) on both sides of the expression. If your syntax contains a triple quote, be
sure that it’s not the same type that you are using to wrap the syntax; otherwise,
Python will treat it as the end of the argument.

Note also that Python treats doubled quotes, contained within quotes of that same
type, differently from SPSS. For example, in Python, "string with ""quoted"" text"
is treated as string with quoted text. Python treats each pair of double quotes as
a separate string and simply concatenates the strings as follows: "string with
"+"quoted"+" text".

Notice that the triple-quoted expression is prefixed with the letter r. The r prefix to
a string specifies Python’s raw mode. This allows you to use the single backslash
(\) notation for file paths, a standard practice for Windows and DOS. That said, it
is a good practice to use forward slashes (/) in file paths, since you may at times
forget to use raw mode, and SPSS accepts a forward slash (/) for any backslash in
a file specification. For more information, see “Using Raw Strings in Python” in
Chapter 13 on p. 237.

Having converted your command syntax job so that it can run from Python, you have
two options: include this in a BEGIN PROGRAM block and run it from SPSS, or run it
from a Python IDE (Integrated Development Environment) or shell. Using a Python
IDE can be a very attractive way to develop and debug your code because of the syntax
assistance and debugging tools provided. For more information, see “Using a Python



315

Tips on Migrating Command Syntax, Macro, and Scripting Jobs to Python

IDE” in Chapter 12 on p. 228. To run your job from SPSS, simply enclose it in a
BEGIN PROGRAM-END PROGRAM block and include an import spss statement as
the first line in the program block, as in:

BEGIN PROGRAM.
import spss
spss.Submit(r"""
GET FILE='c:/examples/data/Employee data.sav'.
SORT CASES BY gender.
SPLIT FILE

LAYERED BY gender.
DESCRIPTIVES

VARIABLES=salary salbegin jobtime prevexp
/STATISTICS=MEAN STDDEV MIN MAX.

SPLIT FILE OFF.
""")
END PROGRAM.

You have taken an SPSS command syntax job and converted it into a Python job. As it
stands, the Python job does exactly what the SPSS job did. Presumably, though, you’re
going to all this trouble to exploit functionality that was awkward or just not possible
with standard command syntax. For example, you may need to run your analysis
on many datasets, some of which have a gender variable and some of which do not.
For datasets without a gender variable, you’ll generate an error if you attempt a split
on gender, so you’d like to run DESCRIPTIVES without the split. Following is an
example of how you might extend your Python job to accomplish this, leaving aside
the issue of how you obtain the paths to the datasets. As in the example above, you
have the option of running this from SPSS by wrapping the code in a program block,
as shown here, or running it from a Python IDE.



316

Chapter 18

*python_converted_syntax.sps.
BEGIN PROGRAM.
import spss
filestring = r'c:/examples/data/Employee data.sav'
spss.Submit("GET FILE='%s'."%(filestring))
for i in range(spss.GetVariableCount()):

if spss.GetVariableLabel(i).lower()=='gender':
genderVar=spss.GetVariableName(i)
spss.Submit("""
SORT CASES BY %s.
SPLIT FILE

LAYERED BY %s.
""" %(genderVar,genderVar))
break

spss.Submit("""
DESCRIPTIVES

VARIABLES=salary salbegin jobtime prevexp
/STATISTICS=MEAN STDDEV MIN MAX.

SPLIT FILE OFF.
""")
END PROGRAM.

The string for the GET command includes the expression %s, which marks the
point at which a string value is to be inserted. The particular value to insert is
taken from the % expression that follows the string. In this case, the value of the
variable filestring replaces the occurrence of %s. Note that the same technique
(using multiple substitutions) is used to substitute the gender variable name into
the strings for the SORT and SPLIT FILE commands. For more information,
see “Dynamically Specifying Command Syntax Using String Substitution” in
Chapter 13 on p. 234.

The example uses a number of functions in the spss module, whose names are
descriptive of their function: GetVariableCount, GetVariableLabel,
GetVariableName. These functions access the dictionary for the active dataset
and allow for conditional processing based on dictionary information. For more
information, see Appendix A on p. 361.

A SORT command followed by a SPLIT FILE command is run only when a
gender variable is found.

Note: When working with code that contains string substitution (whether in a program
block or a Python IDE), it’s a good idea for debugging to turn on both PRINTBACK

and MPRINT with the command SET PRINTBACK ON MPRINT ON. This will display
the actual command syntax that was run.



317

Tips on Migrating Command Syntax, Macro, and Scripting Jobs to Python

Migrating Macros to Python

The ability to use Python to dynamically create and control SPSS command syntax
renders SPSS macros obsolete for most purposes. Macros are still important, however,
for passing information from a BEGIN PROGRAM block so that it is available to SPSS
command syntax outside of the block. For more information, see “Mixing Command
Syntax and Program Blocks” in Chapter 12 on p. 224. You can continue to run your
existing macros, but you may want to consider converting some to Python, especially if
you’ve struggled with limitations of the macro language and want to exploit the more
powerful programming features available with Python. There is no simple recipe for
converting an SPSS macro to Python, but a few general rules will help get you started:

The analog of an SPSS macro is a Python user-defined function. A user-defined
function is a named piece of code in Python that is callable and accepts parameters.
For more information, see “Creating User-Defined Functions in Python” in
Chapter 13 on p. 239.

A block of SPSS command syntax within a macro is converted to run in a Python
function by wrapping the block in triple quotes and including it as the argument to
the Submit function in the spss module. Macro arguments that form part of an
SPSS command, such as a variable list, become Python variables whose value is
inserted into the command specification using string substitution.

As an example, consider converting the following macro, which selects a random set of
cases from a data file. Macro arguments provide the number of cases to be selected
and the criteria used to determine whether a given case is included in the population to
be sampled. We’ll assume that you’re familiar with the macro language and will focus
on the basics of the conversion to Python.



318

Chapter 18

SET MPRINT=OFF.
DEFINE !SelectCases (

nb=!TOKENS(1) /crit=!ENCLOSE('(',')')
/FPath=!TOKENS(1) /RPath=!TOKENS(1))

GET FILE=!FPath.
COMPUTE casenum=$CASENUM.
DATASET COPY temp_save.
SELECT IF !crit.
COMPUTE draw=UNIFORM(1).
SORT CASES BY draw.
N OF CASES !nb.
SORT CASES BY casenum.
MATCH FILES FILE=*

/IN=ingrp
/FILE=temp_save
/BY=casenum
/DROP=draw casenum.

SAVE OUTFILE=!RPath.
DATASET CLOSE temp_save.
!ENDDEFINE.

SET MPRINT=ON.
!SelectCases nb=5 crit=(gender='m' AND jobcat=1 AND educ<16)

FPath= 'c:\examples\data\employee data.sav'
RPath= 'c:\temp\results.sav'.

The name of the macro is SelectCases, and it has four arguments: the number of
cases to select, the criteria to determine if a case is eligible for selection, the name
and path of the source data file, and the result file.

In terms of the macro language, this macro is very simple, since it consists only of
command syntax, parts of which are specified by the arguments to the macro.

The macro call specifies a random sample of five cases satisfying the criteria
specified by crit. The name and path of the source data file and the result file are
provided as FPath and RPath, respectively.



319

Tips on Migrating Command Syntax, Macro, and Scripting Jobs to Python

The macro translates into the following Python user-defined function:

def SelectCases(nb,crit,FPath,RPath):
"""Select a random set of cases from a data file using a
specified criteria to determine whether a given case is
included in the population to be sampled.
nb is the number of cases to be selected.
crit is the criteria to use for selecting the sample population.
FPath is the path to the source data file.
RPath is the path to the result file.
"""
spss.Submit("""
GET FILE='%(FPath)s'.
COMPUTE casenum=$CASENUM.
DATASET COPY temp_save.
SELECT IF %(crit)s.
COMPUTE draw=UNIFORM(1).
SORT CASES BY draw.
N OF CASES %(nb)s.
SORT CASES BY casenum.
MATCH FILES FILE=*

/IN=ingrp
/FILE=temp_save
/BY=casenum
/DROP=draw casenum.

SAVE OUTFILE="%(RPath)s".
DATASET CLOSE temp_save.
"""%locals())

The def statement signals the beginning of a function definition—in this case, the
function named SelectCases. The colon at the end of the def statement is required.

The function takes the same four arguments as the macro. Note, however, that you
simply specify the names of the arguments. No other defining characteristics
are required, although Python supports various options for specifying function
arguments, such as defining a default value for an optional argument.

The body of the macro consisted solely of a block of command syntax. When
converting the macro to Python, you simply enclose the block in triple quotes and
include it as the argument to the Submit function. The Submit function—a
function in the spss module—takes a string argument containing SPSS command
syntax and submits the syntax to SPSS for processing. Enclosing the command
syntax in triple quotes allows you to specify a block of SPSS commands that spans
multiple lines without having to be concerned about line continuation characters.



320

Chapter 18

Notice that the code within the Python function is indented. Python uses
indentation to specify the grouping of statements, such as the statements in a
user-defined function. Had the code not been indented, Python would process the
function as consisting only of the def statement, and an exception would occur.

The points in the command syntax where macro arguments occurred, such as
SELECT IF !crit, translate to specifications for string substitutions in Python,
such as SELECT IF %(crit)s. To make the conversion more transparent,
we’ve used the same names for the arguments in the Python function as were
used in the macro. Using the locals function for the string substitution, as in
%locals(), allows you to insert the value of any locally defined variable into
the string simply by providing the name of the variable. For example, the value of
the variable crit is inserted at each occurrence of the expression %(crit)s. For
more information, see “Dynamically Specifying Command Syntax Using String
Substitution” in Chapter 13 on p. 234.

Once you’ve translated a macro into a Python user-defined function, you’ll want to
include the function in a Python module on the Python search path. You can then call
your function from within a BEGIN PROGRAM-END PROGRAM block in SPSS, as
shown in the example that follows, or call it from within a Python IDE. To learn how to
include a function in a Python module and make sure it can be found by Python, see
“Creating User-Defined Functions in Python” on p. 239. To learn how to run code
from a Python IDE, see “Using a Python IDE” on p. 228.

Example

This example calls the Python function SelectCases with the same parameter values
used in the call to the macro SelectCases.



321

Tips on Migrating Command Syntax, Macro, and Scripting Jobs to Python

*python_select_cases.sps.
BEGIN PROGRAM.
import samplelib
crit="(gender='m' AND jobcat=1 AND educ<16)"
samplelib.SelectCases(5,crit,

r'c:/examples/data/Employee data.sav',
r'c:/temp/results.sav')

END PROGRAM.

Once you’ve created a user-defined function and saved it to a module file, you can
call it from a BEGIN PROGRAM block that includes the statement to import the
module. In this case, the SelectCases function is contained in the samplelib
module, so the program block includes the import samplelib statement.

Note: To run this program block, you need to copy the module file samplelib.py
from \examples\python on the accompanying CD to your Python “site-packages”
directory, typically C:\Python24\Lib\site-packages. Because the samplelib
module uses functions in the spss module, it includes an import spss statement.

Runtime Behavior of Macros and Python Programs

Both macros and Python programs are defined when read, but when called, a macro is
expanded before any of it is executed, while Python programs are evaluated line by
line. This means that a Python program can respond to changes in the state of the SPSS
dictionary that occur during the course of its execution, while a macro cannot.

Migrating Sax Basic Scripts to Python
With the functionality provided by the SPSS-Python Integration Plug-In, you can
accomplish many tasks that previously required the SPSS scripting facility for
accessing dictionary information or case data. And when extended with two publicly
available modules (not provided by SPSS), Python can access OLE automation (COM)
objects, allowing you to manipulate output that appears in the SPSS Viewer. You’ll still
want to make use of the scripting facility for autoscripts, but you may want to consider
migrating other scripts to Python. In this section, we’ll focus on migrating scripts that
manipulate Viewer objects, since there are some general considerations to be aware of.

In order to access SPSS Viewer objects from Python, you’ll need the two publicly
available modules pythoncom and win32com.client. These are installed with the
pywin32 package for Python 2.4, available at http://sourceforge.net/projects/pywin32
(for example, pywin32-205.win32-py2.4.exe from that site). This package should be

http://sourceforge.net/projects/pywin32
http://sourceforge.net/projects/pywin32


322

Chapter 18

installed to your “site packages” directory, typically C:\Python24\Lib\site-packages.
As an added benefit, it includes installation of the PythonWin IDE.

These extension modules allow you to access the SPSS Application object, from
which you can access the full suite of SPSS OLE automation methods. In practice,
using OLE automation from Python is most useful for accessing and manipulating
objects in the Viewer, since other tasks, such as accessing dictionary information
or case data, are better accomplished using Python functions from the spss,
spssaux, and spssdata modules. If you’re interested in learning how to work with
dictionary information or case data in Python, see “Working with Variable Dictionary
Information” on p. 251 or “Getting Case Data from the Active Dataset” on p. 273.

To facilitate using OLE automation to manipulate Viewer objects from Python,
SPSS has provided the viewer module, a supplementary module available for
download from SPSS Developer Central at www.spss.com/devcentral. This capability
is available only when you are working in local mode and does not provide access to
the Draft Viewer. That said, when converting Sax Basic scripts that manipulate Viewer
objects, you’ll want to make use of the functionality in this module, as described in
the example that follows. Once you’ve downloaded the viewer module from SPSS
Developer Central, save it to your Python “site-packages” directory. You’ll need the
viewer module to run the example in this section. For more information about using
the viewer module than is provided here, see “Creating, Modifying, and Saving
Viewer Contents” on p. 301.

As an example of converting a Sax Basic script to Python, we’ll consider a modified
version of the Traffic Light script that is distributed with the SPSS product. After
running this popular script, cells in a selected pivot table are green if their value
exceeds a specified limit, red if their value is less than a specified minimum, and
yellow if their value lies between the specified minimum and maximum. In this
version, we’ll reverse the coloring scheme so that green specifies that a cell is less than
a threshold and red specifies that it’s above a threshold. And we won’t use yellow for
cells with intermediate values. The Sax Basic script follows.



323

Tips on Migrating Command Syntax, Macro, and Scripting Jobs to Python

'BEGIN DESCRIPTION
'This is a modified version of the Traffic Light script by Bernhard Witt.
'Cells with values greater than high-margin will be colored red.
'Cells with values less than low-margin will be colored green.
'High-margin is set at 20 and low-margin is set at 10.
'Requirements: The pivot table to color should be selected.
'END DESCRIPTION

Option Explicit
Const TotalStr ="Total"
Const red = RGB(178,34,34)
Const green = RGB(60, 179, 113)
Const white = RGB(255,255,255)

Sub Main
Dim objItems As ISpssItems
Dim objItem As ISpssItem
Dim objPivotTable As PivotTable
Dim objDataCells As ISpssDataCells
Dim objRowLabels As ISpssLabels
Dim objColLabels As ISpssLabels
Dim lngNumRows As Long, lngNumColumns As Long
Dim lowMargin As Single, highMargin As Single
Dim I As Integer, J As Integer

lowMargin = 10
highMargin = 20
Set objItems = objSpssApp.GetDesignatedOutputDoc.Items

For I = 0 To objItems.Count - 1
Set objItem = objItems.GetItem(I)
If objItem.SPSSType = 5 And objItem.Selected = True Then

Set objPivotTable = objItem.Activate
Exit For

End If
Next I

Set objDataCells = objPivotTable.DataCellArray
Set objRowLabels = objPivotTable.RowLabelArray
Set objColLabels = objPivotTable.ColumnLabelArray
lngNumRows = objDataCells.NumRows
lngNumColumns = objDataCells.NumColumns

For I=0 To lngNumRows-1
If InStr (objRowLabels.ValueAt(I,objRowLabels.NumColumns-1),TotalStr)=0 Then

For J=0 To lngNumColumns-1
If InStr (objColLabels.ValueAt(objColLabels.NumRows-1,J),TotalStr)=0 Then

If Len(objDataCells.ValueAt(I,J)) > 0 Then
If objDataCells.ValueAt(I,J) <= lowMargin Then

objDataCells.BackgroundColorAt(I,J) = green
ElseIf objDataCells.ValueAt(I,J) >= highMargin Then

objDataCells.BackgroundColorAt(I,J) = red
End If

Else
objDataCells.BackgroundColorAt(I,J) = white

End If
End If

Next
End If

Next
objItem.Deactivate
End Sub



324

Chapter 18

We’ll assume that you’re familiar with the Sax Basic language and will focus on
the details of the conversion to Python. When you’re converting from Sax Basic to
Python, keep in mind that Sax Basic is not case sensitive, but Python is. The above
script translates into the following Python code, which is shown here enclosed within
a BEGIN PROGRAM-END PROGRAM block that can be run from SPSS. You can also
run the code from a Python IDE. For more information, see “Using a Python IDE” in
Chapter 12 on p. 228.

*python_color_cells.sps.
BEGIN PROGRAM.
import viewer
TotalStr ="Total"
red = 178+34*2**8+34*2**16
green = 60+179*2**8+113*2**16
white = 255+255*2**8+255*2**16
lowMargin = 10
highMargin = 20

spssappObj = viewer.spssapp()
objItems = spssappObj.GetDesignatedOutput().Items

for I in range(objItems.Count):
objItem = objItems.GetItem(I)
if objItem.SPSSType==5 and objItem.Selected:

objPivotTable=objItem.Activate()
break

try:
objDataCells=objPivotTable.DataCellArray()
objRowLabels=objPivotTable.RowLabelArray()
objColLabels=objPivotTable.ColumnLabelArray()
lngNumRows=objDataCells.NumRows
lngNumColumns=objDataCells.NumColumns

for I in range(lngNumRows):
if objRowLabels.ValueAt(I,objRowLabels.NumColumns-1).find(TotalStr)==-1:

for J in range(lngNumColumns):
if objColLabels.ValueAt(objColLabels.NumRows-1,J).find(TotalStr)==-1:

if objDataCells.ValueAt(I,J):
if objDataCells.ValueAt(I,J) <= lowMargin:

objDataCells.SetBackgroundColorAt(I,J,green)
elif objDataCells.ValueAt(I,J) >= highMargin:

objDataCells.SetBackgroundColorAt(I,J,red)
else:

objDataCells.SetBackgroundColorAt(I,J,white)
finally:

objItem.Deactivate()
END PROGRAM.

Since the Python code makes use of functions and methods in the viewer module,
it is included on the import statement.



325

Tips on Migrating Command Syntax, Macro, and Scripting Jobs to Python

Unlike Sax Basic, Python doesn’t have an RGB function, so you have to provide
integer representations of the RGB values you want. For example, the integer for
RGB(178,34,34) is calculated from the expression: 178+34*2**8+34*2**16.

To access the SPSS OLE automation methods, you create an instance of the
spssapp class from the viewer module, as in viewer.spssapp(). We’ve
assigned the instance to the variable spssappObj, which then contains a reference
to the SPSS Application object. Since Python is a dynamically typed language,
you don’t have to declare variables before assigning values to them or use special
instructions, such as Set in Sax Basic, for object references.

The GetDesignatedOutput method of the spssapp class returns a reference
to the designated (current) Viewer window. In Sax Basic, you would use the
GetDesignatedOutputDoc method. The GetDesignatedOutput method
is a wrapper for GetDesignatedOutputDoc that provides some necessary
initialization.

Object properties (at least properties that don’t require arguments) are read and set
the same in Python as in Sax Basic. For example, objItems.Count returns the
Count property of the objItems collection.

Object methods, for methods called with arguments, are invoked the same in
Python as in Sax Basic. For example, objItem = objItems.GetItem(I)
calls the GetItem method of the objItems collection and returns a reference to
the ith item in the collection.

When calling a method that doesn’t take arguments, Python requires an empty
set of parentheses. The parentheses let Python know that you’re referring to a
function and not a property of an object. For example, objPivotTable =
objItem.Activate() calls the Activate method of a Viewer item. The same
code in Sax Basic would look like objPivotTable = objItem.Activate;
that is, no parentheses. If you omit the parentheses in Python, you get a reference
to the Activate method instead of calling the method.

Whenever you activate an object, intending to deactivate it when you are done, use
a try:…finally: block, as is done here, to ensure that if an exception is raised,
the Deactivate method is always called. The try clause contains all of the code
to execute against the object, and the finally clause calls the Deactivate
method.

Object properties requiring arguments, such as the row and column indices of a
cell, become methods in Python so that the arguments can be properly passed. The
code for retrieving values of such properties looks the same in Python as in Sax



326

Chapter 18

Basic, but you’re actually invoking a method in Python as opposed to simply
accessing a property in Sax Basic. For example, objDataCells.ValueAt(I,J)
retrieves the ValueAt property for the (I,J) element of an array—in this case,
the data cell array of the pivot table.

Setting the value of such a property in Python requires special handling. Consider
the BackgroundColorAt property for data cells used in the Sax Basic code
sample above. It requires the row and column indices of the associated cell as
arguments. In Python, if you try to set the BackgroundColorAt property
of a cell with code such as objDataCells.BackgroundColorAt(I,J) =

value, you will cause an exception because Python thinks you’re trying to set the
function BackgroundColorAt to a value, which is not allowed. (Remember,
Python treats a name followed by a pair of parentheses as a function.) To
set a property that has arguments, use the Set form of the method associated
with the property and pass the value to set as an additional parameter. In the
present example, objDataCells.SetBackgroundColorAt(I,J,green)
sets the BackgroundColorAt property of the (I,J) cell of the data cell
array of the pivot table to the value specified by the variable green (the integer
representation for the desired shade of green). This is accomplished using the
SetBackgroundColorAt method.

Note: In order for the Set form of a method (such as SetBackgroundColorAt)
to work, you may need to run the utility program makepy.py, located in the client
subdirectory where you installed the win32com.client module—for example,
C:\Python24\Lib\site-packages\win32com\client\makepy.py. If you use the PythonWin
IDE, you can launch makepy.py from the COM Makepy utility item on the Tools menu.
Once the makepy utility is launched, select the most recent version of the SPSS Type
Library that you need (such as the SPSS Pivot Table Type Library, used in the present
example), and click OK. Repeat for each SPSS Type Library that you need. If you
don’t know which libraries you need, you can simply repeat the process for each SPSS
Type Library listed. You need run the utility only once for each library.



327

Tips on Migrating Command Syntax, Macro, and Scripting Jobs to Python

Example

As a concrete example of coloring a pivot table using the Python code presented above,
do the following:

E Run the command syntax file python_color_cells_data.sps, located in the
\examples\commands folder on the accompanying CD. It prepares a dataset and then
runs a SUMMARIZE command to generate a suitable pivot table.

E Select the Percentage Responding Strongly Negative table from the results of the
SUMMARIZE command.

E Run the command syntax file python_color_cells.sps, located in the
\examples\commands folder on the accompanying CD.

After running this command syntax file, you should notice that cells whose values are
less than 10 are green and those with values greater than 20 are red. The dataset used
to generate this table contains responses from a customer satisfaction survey conducted
by a local store chain. Customers were asked to rate satisfaction in a number of
categories, such as price, variety, and service. In one analysis of the data, management
was interested in the percentage of respondents in each category who indicated strong
dissatisfaction, with results presented by store. Values greater than 20% were deemed
high enough to warrant attention, but they also wanted to highlight values less than
10% as representing good performance. Since high values have a negative connotation
and low values a positive one, it made sense to reverse the color scheme used in the
standard Traffic Light script.





Chapter

19
SPSS for SAS Programmers

This chapter shows the SPSS code and SAS equivalents for a number of basic data
management tasks. This is not a comprehensive comparison of the two applications.
The purpose of this chapter is to provide a point of reference for users familiar with
SAS who are making the transition to SPSS; it is not intended to demonstrate how one
application is better or worse than the other.

Reading Data
Both SPSS and SAS can read data stored in a wide variety of formats, including
numerous database formats, Excel spreadsheets, and text files. All of the SPSS
examples presented in this section are discussed in greater detail in Chapter 3.

Reading Database Tables

Both SAS and SPSS rely on Open Database Connectivity (ODBC) to read data from
relational databases. Both applications read data from databases by reading database
tables. You can read information from a single table or merge data from multiple
tables in the same database.

Reading a Single Database Table

The structure of a database table is very similar to the structure of an SPSS data file or
SAS dataset: records (rows) are cases, and fields (columns) are variables.

access1.sps.
GET DATA /TYPE=ODBC /CONNECT=
'DSN=MS Access Database;DBQ=C:\examples\data\dm_demo.mdb;'+
'DriverId=25;FIL=MS Access;MaxBufferSize=2048;PageTimeout=5;'
/SQL = 'SELECT * FROM CombinedTable'.

EXECUTE.

329



330

Chapter 19

proc sql;
connect to odbc(dsn=dm_demo uid=admin pwd=admin);
create table sasdata1 as

select *
from connection to odbc(
select *
from CombinedTable
);

quit;

The SPSS code allows you to input the parameters for the name of the database
and the path directly into the code. SAS assumes that you have used the Windows
Administrative Tools to set up the ODBC path. For this example, SAS assumes
that the ODBC DSN for the database c:\examples\data\dm_demo.mdb is defined
as dm_demo.

Another difference that you will notice is that SPSS does not use a dataset name.
This is because once the data is read, it is immediately the active dataset in SPSS.
For this example, the SAS dataset is given the name sasdata1.

In SPSS, the CONNECT string and all SQL statements must be enclosed in quotes.

SAS converts the spaces in field names to underscores in variable names, while
SPSS removes the spaces without substituting any characters. Where SAS uses
all of the original variable names as labels, SPSS provides labels for only the
variables not conforming to SPSS standards. So, in this example, the variable ID
will be named ID in SPSS with no label and will be named ID in SAS with a
label of ID. The variable Marital Status will be named Marital_Status in SAS and
MaritalStatus in SPSS, with a label of Marital Status in both SPSS and SAS.

Reading Multiple Tables

Both SPSS and SAS support reading and merging multiple database tables, and the
code in both languages is very similar.

*access_multtables1.sps.
GET DATA /TYPE=ODBC /CONNECT=
'DSN=MS Access Database;DBQ=C:\examples\data\dm_demo.mdb;'+
'DriverId=25;FIL=MS Access;MaxBufferSize=2048;PageTimeout=5;'

/SQL =
'SELECT * FROM DemographicInformation, SurveyResponses'
' WHERE DemographicInformation.ID=SurveyResponses.ID'.

EXECUTE.



331

SPSS for SAS Programmers

proc sql;
connect to odbc(dsn=dm_demo uid=admin pwd=admin);
create table sasdata2 as

select *
from connection to odbc(
select *
from DemographicInformation, SurveyResponses
where DemographicInformation.ID=SurveyResponses.ID
);

quit;

Both languages also support both left and right outer joins and one-to-many record
matching between database tables.

*sqlserver_outer_join.sps.
GET DATA /TYPE=ODBC
/CONNECT= 'DSN=SQLServer;UID=;APP=SPSS For Windows;'
'WSID=ROLIVERLAP;Network=DBMSSOCN;Trusted_Connection=Yes'

/SQL =
'SELECT SurveyResponses.ID, SurveyResponses.Internet,'
' [Value Labels].[Internet Label]'
' FROM SurveyResponses LEFT OUTER JOIN [Value Labels]'
' ON SurveyResponses.Internet'
' = [Value Labels].[Internet Value]'.

proc sql;
connect to odbc(dsn=sql_survey uid=admin pwd=admin);
create table sasdata3 as

select *
from connection to odbc(
select SurveyResponses.ID,

SurveyResponses.Internet,
"Value Labels"."Internet Label"

from SurveyReponses left join "Value Labels"
on SurveyReponses.Internet =
"Value Labels"."Internet Value"
);

quit;

The left outer join works similarly for both languages.

The resulting dataset will contain all of the records from the SurveyResponses
table, even if there is not a matching record in the Value Labels table.

SPSS requires the syntax LEFT OUTER JOIN and SAS requires the syntax left
join to perform the join.

Both languages support the use of either quotes or square brackets to delimit table
and/or variable names that contain spaces. Since SPSS requires that each line of
SQL be quoted, square brackets are used here for clarity.



332

Chapter 19

Reading Excel Files

SPSS and SAS can read individual Excel worksheets and multiple worksheets in the
same Excel workbook.

Reading a Single Worksheet

As with reading a single database table, the basic mechanics of reading a single
worksheet are fairly simple: rows are read as cases, and columns are read as variables.

*readexcel.sps.
GET DATA

/TYPE=XLS
/FILE='c:\examples\data\sales.xls'
/SHEET=NAME 'Gross Revenue'
/CELLRANGE=RANGE 'A2:I15'
/READNAMES=on .

proc import datafile='c:\examples\data\sales.xls'
dbms=excel2000 replace out=SASdata4;
sheet="Gross Revenue";
range="A2:I15";
getnames=yes;
run;

Both languages require the name of the Excel file, worksheet name, and range
of cells.

Both provide the choice of reading the top row of the range as variable
names. SPSS accomplishes this with the READNAMES subcommand, and SAS
accomplishes this with the GETNAMES option.

SAS requires an output dataset name. The dataset name SASdata4 has been used in
this example. SPSS has no corresponding requirement.

Both languages convert spaces in variable names to underscores. SAS uses all of
the original variable names as labels, and SPSS provides labels for the variable
names not conforming to SPSS variable naming rules. In this example, both
languages convert Store Number to Store_Number with a label of Store Number.

The two languages use different rules for assigning the variable type (for example,
numeric, string, or date). SPSS searches the entire column to determine each
variable type. SAS searches to the first non-missing value of each variable to
determine the type. In this example, the Toys variable contains dollar-formatted
data with the exception of one record containing a value of “NA.” SPSS assigns



333

SPSS for SAS Programmers

this variable the string data type, preserving the “NA” in record five, whereas SAS
assigns it a numeric dollar format and sets the value for Toys in record five to
missing.

Reading Multiple Worksheets

Both SPSS and SAS rely on ODBC to read multiple worksheets from a workbook.

*readexcel2.sps.
GET DATA

/TYPE=ODBC
/CONNECT=

'DSN=Excel Files;DBQ=c:\examples\data\sales.xls;' +
'DriverId=790;MaxBufferSize=2048;PageTimeout=5;'
/SQL =
'SELECT Location$.[Store Number], State, Region, City,'
' Power, Hand, Accessories,'
' Tires, Batteries, Gizmos, Dohickeys'
' FROM [Location$], [Tools$], [Auto$]'
' WHERE [Tools$].[Store Number]=[Location$].[Store Number]'
' AND [Auto$].[Store Number]=[Location$].[Store Number]'.

proc sql;
connect to odbc(dsn=salesxls uid=admin pwd=admin);
create table sasdata5 as

select *
from connection to odbc(
select Location$."Store Number", State, Region, City,

Power, Hand, Accessories, Tires, Batteries, Gizmos,
Dohickeys

from "Location$", "Tools$", "Auto$"
where "Tools$"."Store Number"="Location$"."Store Number"
and "Auto$"."Store Number"="Location$"."Store Number"
);

quit;;

For this example, both SPSS and SAS treat the worksheet names as table names
in the From statement.

Both require the inclusion of a “$” after the worksheet name.

As in the previous ODBC examples, quotes could be substituted for the square
brackets in the SPSS code and vice-versa for the SAS code.



334

Chapter 19

Reading Text Data

Both SPSS and SAS can read a wide variety of text-format data files. This example
shows how the two applications read comma-separated values (CSV) files. A CSV
file uses commas to separate data values and encloses values that include commas in
quotation marks. Many applications export text data in this format.

ID,Name,Gender,Date Hired,Department
1,"Foster, Chantal",f,10/29/1998,1
2,"Healy, Jonathan",m,3/1/1992,3
3,"Walter, Wendy",f,1/23/1995,2

*delimited_csv.sps.
GET DATA /TYPE = TXT

/FILE = 'C:\examples\data\CSV_file.csv'
/DELIMITERS = ","
/QUALIFIER = '"'
/ARRANGEMENT = DELIMITED
/FIRSTCASE = 2
/VARIABLES = ID F3 Name A15 Gender A1
Date_Hired ADATE10 Department F1.

data csvnew;
infile "c:\examples\data\csv_file.csv" DLM=',' Firstobs=2 DSD;
informat name $char15. gender $1. date_hired mmddyy10.;
input id name gender date_hired department;
run;

The SPSS DELIMITERS and SAS DLM values identify the comma as the delimiter.

SAS uses the DSD option on the infile statement to handle the commas within
quoted values, and SPSS uses the QUALIFIER subcommand.

SPSS uses the format ADATE10 and SAS uses the format mmyydd10 to properly
read the date variable.

The SPSS FIRSTCASE subcommand is equivalent to the SAS Firstobs
specification, indicating that the data to be read start on the second line, or record.

Merging Data Files

Both SPSS and SAS can merge two or more datasets together. All of the SPSS
examples presented in this section are discussed in greater detail in “Merging Data
Files” on p. 88 in Chapter 4.



335

SPSS for SAS Programmers

Merging Files with the Same Cases but Different Variables

One of the types of merges supported by both applications is a match merge: two or
more datasets that contain the same cases but different variables are merged together.
Records from each dataset are matched based on the values of one or more key
variables. For example, demographic data for survey respondents might be contained
in one dataset, and survey responses for surveys taken at different times might be
contained in multiple additional datasets. The cases are the same (respondents), but the
variables are different (demographic information and survey responses).

GET FILE='C:\examples\data\match_response1.sav'.
SORT CASES BY id.
DATASET NAME response1
GET FILE='C:\examples\data\match_response2.sav'.
SORT CASES BY id.
DATASET NAME response2.
GET FILE='C:\examples\data\match_demographics.sav'.
SORT CASES BY id.
MATCH FILES /FILE=*

/FILE='response1'
/FILE='response2'
/RENAME opinion1=opinion1_2 opinion2=opinion2_2
opinion3=opinion3_2 opinion4=opinion4_2

/BY id.
EXECUTE.

libname in "c:\examples\data";
proc sort data=in.match_response1;

by id;
run;

proc sort data=in.match_response2;
by id;
run;

proc sort data=in.match_demographics;
by id;
run;

data match_new;
merge match_demographics

match_response1
match_response2 (rename=(opinion1=opinion1_2

opinion2=opinion2_2 opinion3=opinion3_2
opinion4=opinion4_2));

by id;
run;

SPSS uses the GET FILE command to open each data file prior to sorting. SAS
uses libname to assign a working directory for each dataset that needs sorting.



336

Chapter 19

Both require that each dataset be sorted by values of the BY variable used to
match cases.

In SPSS, the last data file opened with the GET FILE command is the active
data file. So, in the MATCH FILES command, FILE=* refers to the data
file match_demographics.sav, and the merged working data file retains that
filename (but if you do not explicitly save the file with the same filename, the
original file is not overwritten). SAS requires a dataset name for the DATA step. In
this example, the merged dataset is given the name match_new.

Both SPSS and SAS allow you to rename variables when merging. This is
necessary because match_response1 and match_response2 contain variables with
the same names. If the variables were not renamed for the second dataset, then the
variables merged from the first dataset would be overwritten.

Merging Files with the Same Variables but Different Cases

You can also merge two or more datasets that contain the same variables but different
cases, appending cases from each dataset. For example, regional revenue for two
different company divisions might be stored in two separate datasets. Both files have
the same variables (region indicator and revenue) but different cases (each region for
each division is a case).

*add_files1.sps.
ADD FILES

/FILE = 'c:\examples\data\catalog.sav'
/FILE =' c:\examples\data\retail.sav'

/IN = Division.
EXECUTE.
VALUE LABELS Division 0 'Catalog' 1 'Retail Store'.

libname in "c:\examples\data";
proc format;

value divfmt
0='Catalog'
1='Retail Store' ;

run;
data append_new;

set in.catalog (in=a) in.retail (in=b);
format division divfmt.;
if a then division=0;

else if b then division=1;
run;



337

SPSS for SAS Programmers

In the SPSS code, the IN subcommand after the second FILE subcommand creates
a new variable, Division, with a value of 1 for cases from retail.sav and a value
of 0 for cases from catalog.sav. To achieve this same result in SAS requires the
Format procedure to create a user-defined format where 0 represents the catalog
file and 1 represents the retail file.

In SAS, the SET statement is required to append the files so that the system
variable IN can be used in the data step to assist with identifying which dataset
contains each observation.

The SPSS VALUE LABELS command assigns descriptive labels to the values 0 and
1 for the variable Division, making it easier to interpret the values of the variable
that identifies the source file for each case. In SAS, this would require a separate
formats file.

Aggregating Data
SPSS and SAS can both aggregate groups of cases, creating a new dataset in which the
groups are the cases. In this example, information was collected for every person living
in a selected sample of households. In addition to information for each individual, each
case contains a variable that identifies the household. You can change the unit of
analysis from individuals to households by aggregating the data based on the value of
the household ID variable.

*aggregate2.sps.
DATA LIST FREE (" ")

/ID_household (F3) ID_person (F2) Income (F8).
BEGIN DATA
101 1 12345 101 2 47321 101 3 500 101 4 0
102 1 77233 102 2 0
103 1 19010 103 2 98277 103 3 0
104 1 101244
END DATA.
AGGREGATE

/OUTFILE = * MODE = ADDVARIABLES
/BREAK = ID_household
/per_capita_Income = MEAN(Income)
/Household_Size = N.

data tempdata;
informat id_household 3. id_person 2. income 8.;
input ID_household ID_person Income @@;

cards;
101 1 12345 101 2 47321 101 3 500 101 4 0
102 1 77233 102 2 0



338

Chapter 19

103 1 19010 103 2 98277 103 3 0
104 1 101244
;
run;
proc sort data=tempdata;

by ID_household;
run;

proc summary data=tempdata;
var Income;
by ID_household;
output out=aggdata

mean=per_capita_Income
n=Household_Size;

run;
data new;

merge tempdata aggdata (drop=_type_ _freq_);
by ID_Household;
run;

SAS uses the Summary procedure for aggregating, whereas SPSS has a specific
command for aggregating data: AGGREGATE.

The SPSS BREAK subcommand is equivalent to the SAS By Variable command.

In SPSS, you specify the aggregate summary function and the variable to aggregate
in a single step, as in: per_capita_Income=MEAN(Income). In SAS, this
requires two separate statements: var Income and mean=per_capita_Income.

To append the aggregated values to the original data file, SPSS uses the
subcommand /OUTFILE = * MODE = ADDVARIABLES. With SAS, you need to
merge the original and aggregated datasets, and the aggregated dataset contains
two automatically generated variables that you probably don’t want to include in
the merged results. The SAS merge command contains a specification to delete
these extraneous variables.

Assigning Variable Properties

In addition to the basic data type (numeric, string, date, and so on), you can assign
other properties that describe the variables and their associated values. In a sense,
these properties can be considered metadata: data that describe the data. All of the
SPSS examples provided here are discussed in greater detail in “Variable Properties”
on p. 73 in Chapter 4.



339

SPSS for SAS Programmers

Variable Labels

Both SPSS and SAS provide the ability to assign descriptive variable labels that have
less restrictive rules than variable naming rules. For example, variable labels can
contain spaces and special characters not allowed in variable names.

VARIABLE LABELS
Interview_date "Interview date"
Income_category "Income category"
opinion1 "Would buy this product"
opinion2 "Would recommend this product to others"
opinion3 "Price is reasonable"
opinion4 "Better than a poke in the eye with a sharp stick".

label Interview_date = "Interview date";
label Income_category = "Income category";
label opinion1="Would buy this product";
label opinion2="Would recommend this product to others";
label opinion3="Price is reasonable";
label opinion4="Better than a poke in the eye with a sharp stick";

In SPSS, all of the variable labels can be defined in a single VARIABLE LABELS
command. In SAS, a separate label statement is required for each variable.

In SPSS, VARIABLE LABELS commands can appear anywhere in the command
stream, and the labels are attached to the variables at that point in the command
processing; so, you can assign labels to newly created variables and/or change
labels for existing variables at any time. In SAS, the label statements must
be contained in the data step.

Value Labels

You can also assign descriptive labels for each value of a variable. This is particularly
useful if your data file uses numeric codes to represent non-numeric categories. For
example, income_category uses the codes 1 through 4 to represent different income
ranges, and the four opinion variables use the codes 1 through 5 to represent levels of
agreement/disagreement.

VALUE LABELS
Gender "m" "Male" "f" "Female"
/Income_category 1 "Under 25K" 2 "25K to 49K"
3 "50K to 74K" 4 "75K+" 7 "Refused to answer"
8 "Don't know" 9 "No answer"

/Religion 1 "Catholic" 2 "Protestant" 3 "Jewish"
4 "Other" 9 "No answer"



340

Chapter 19

/opinion1 TO opinion4 1 "Strongly Disagree" 2 "Disagree"
3 "Ambivalent" 4 "Agree" 5 "Strongly Agree" 9 "No answer".

proc format;
value $genfmt

'm'='Male'
'f'='Female'
;

value incfmt
1='Under 25K'
2='25K to 49K'
4='75K+' 3='50K to 74K'
7='Refused to answer'
8='Don''t know'
9='No answer'
;

value relfmt
1='Catholic'
2='Protestant'
3='Jewish'
4='Other'
9='No answer'
;

value opnfmt
1='Strongly Disagree'
2='Disagree'
3='Ambivalent'
4='Agree'
5='Strongly Agree'
9='No answer'
;

run;
data new;

format Gender $genfmt.
Income_category incfmt.
Religion relftm.
opinion1 opinion2 opinion3 opinion4 opnfmt.;

input Gender $ Income_category Religion opinion1-opinion4;
cards;
m 3 4 5 1 3 1
f 3 0 2 3 4 3
;
run;

In SPSS, assigning value labels is relatively straightforward. You can insert VALUE
LABELS commands (and ADD VALUE LABELS commands to append additional
value labels) at any point in the command stream; those value labels, like variable
labels, become metadata that is part of the data file, saved with the data file.

In SAS, you need to define a format and then apply the format to specified
variables within the data step.



341

SPSS for SAS Programmers

Cleaning and Validating Data

Real data frequently contain real errors—and SPSS and SAS both have features that
can help identify invalid or suspicious values. All of the SPSS examples provided in
this section are discussed in detail.

Finding and Displaying Invalid Values

All of the variables in a file may have values that appear to be valid when examined
individually, but certain combinations of values for different variables may indicate
that at least one of the variables has either an invalid value or at least one that is
suspect. For example, a pregnant male clearly indicates an error in one of the values,
whereas a pregnant female older than 55 may not be invalid but should probably be
double-checked.

*invalid_data3.sps.
DATA LIST FREE /age gender pregnant.
BEGIN DATA
25 0 0
12 1 0
80 1 1
47 0 0
34 0 1
9 1 1
19 0 0
27 0 1
END DATA.
VALUE LABELS gender 0 'Male' 1 'Female'

/pregnant 0 'No' 1 'Yes'.
DO IF pregnant = 1.
- DO IF gender = 0.
- COMPUTE valueCheck = 1.
- ELSE IF gender = 1.
- DO IF age > 55.
- COMPUTE valueCheck = 2.
- ELSE IF age < 12.
- COMPUTE valueCheck = 3.
- END IF.
- END IF.
ELSE.
- COMPUTE valueCheck=0.
END IF.
VALUE LABELS valueCheck

0 'No problems detected'
1 'Male and pregnant'
2 'Age > 55 and pregnant'
3 'Age < 12 and pregnant'.



342

Chapter 19

FREQUENCIES VARIABLES = valueCheck.

proc format;
value genfmt

0='Male'
1='Female'
;

value pregfmt
0='No'
1='Yes'
;

value vchkfmt
0='No problems detected'
1='Male and pregnant'
2='Age > 55 and pregnant'
3='Age < 12 and pregnant'
;

run;
data new;

format gender genfmt.
pregnant pregfmt.
valueCheck vchkfmt.
;

input age gender pregnant;
valueCheck=0;
if pregnant then do;

if gender=0 then valueCheck=1;
else if gender then do;

if age > 55 then valueCheck=2;
else if age < 12 then valueCheck=3;

end;
end;

cards;
25 0 0
12 1 0
80 1 1
47 0 0
34 0 1
9 1 1
19 0 0
27 0 1
;
run;
proc freq data=new;

tables valueCheck;
run;

DO IF pregnant = 1 in SPSS is equivalent to if pregnant then do in
SAS. As in the SAS example, you could simplify the SPSS code to DO IF
pregnant, since this resolves to Boolean true if the value of pregnant is 1.



343

SPSS for SAS Programmers

END IF in SPSS is equivalent to end in SAS in this example.

To display a frequency table of valueCheck, SPSS uses a simple FREQUENCIES
command, whereas in SAS you need to call a procedure separate from the data
processing step.

Finding and Filtering Duplicates

In this example, each case is identified by two ID variables: ID_house, which identifies
each household, and ID_person, which identifies each person within the household. If
multiple cases have the same value for both variables, then they represent the same
case. In this example, that is not necessarily a coding error, since the same person may
have been interviewed on more than one occasion. The interview date is recorded in
the variable int_date, and for cases that match on both ID variables, we want to ignore
all but the most recent interview.

The SPSS code used in this example was generated by pasting and editing command
syntax generated by the Identify Duplicate Cases dialog box (Data menu, Identify
Duplicate Cases).

* duplicates_filter.sps.
GET FILE='c:\examples\data\duplicates.sav'.
SORT CASES BY ID_house(A) ID_person(A) int_date(A) .
MATCH FILES /FILE = *

/BY ID_house ID_person /LAST = MostRecent .
FILTER BY MostRecent .
EXECUTE.

libname in "c:\examples\data";
proc sort data=in.duplicates;

by ID_house ID_person int_date;
run;

data new;
set in.duplicates;
by ID_house ID_person;
if last.ID_person;
run;

Like SAS, SPSS is able to identify the last record within each sorted group. In this
example, both assign a value of 1 to the last record in each group and a value of
0 to all other records.

SAS uses the temporary variable last. to identify the last record in each group.
This variable is available for each variable in the by statement following the set
statement within the data step, but it is not saved to the dataset.



344

Chapter 19

SPSS uses a MATCH FILES command with a LAST subcommand to create a new
variable, MostRecent, that identifies the last case in each group. This is not a
temporary variable, so it is available for future processing.

Where SAS uses an if statement to select the last case in each group, SPSS uses a
FILTER command to filter out all but the last case in each group. The new SAS
data step does not contain the duplicate records. SPSS retains the duplicates but
does not include them in reports or analyses unless you turn off filtering (but you
could use SELECT IF to delete instead of filter unselected cases). SPSS displays
these records in the Data Editor with a slash through the row number.

Transforming Data Values

In both SPSS and SAS, you can perform data transformations ranging from simple
tasks, such as collapsing categories for reports, to more advanced tasks, such as
creating new variables based on complex equations and conditional statements. All
of the SPSS examples presented in this section are discussed in greater detail in
“Transforming Data Values” on p. 112 in Chapter 4.

Recoding Data

There are many reasons why you might need or want to recode data. For example,
questionnaires often use a combination of high-low and low-high rankings. For
reporting and analysis purposes, however, you probably want these all coded in a
consistent manner.

*recode.sps.
DATA LIST FREE /opinion1 opinion2.
BEGIN DATA
1 5
2 4
3 3
4 2
5 1
END DATA.
RECODE opinion2
(1 = 5) (2 = 4) (4 = 2) (5 = 1)
(ELSE = COPY)
INTO opinion2_new.

EXECUTE.
VALUE LABELS opinion1 opinion2_new

1 'Really bad' 2 'Bad' 3 'Blah'
4 'Good' 5 'Terrific!'.



345

SPSS for SAS Programmers

proc format;
value opfmt

1='Really bad'
2='Bad'
3='Blah'
4='Good'
5='Terrific!'
;

run;
data recode;

format opinion1 opinion2_new opfmt.;
input opinion1 opinion2;
if opinion2=1 then opinion2_new=5;
else if opinion2=2 then opinion2_new=4;
else if opinion2=4 then opinion2_new=2;
else if opinion2=5 then opinion2_new=1;
else opinion2_new=opinion2;

cards;
1 5
2 4
3 3
4 2
5 1
;
run;

SPSS uses a single RECODE command to create a new variable opinion2_new with
the recoded values of the original variable opinion_2.

SAS uses a series of if/else if/else statements to assign the recoded values,
which requires a separate conditional statement for each value.

ELSE=COPY in the SPSS RECODE command covers any values not explicitly
specified and copies the original values to the new variable. This is equivalent to
the last else statement in the SAS code.

Banding Data

Creating a small number of discrete categories from a continuous scale variable is
sometimes referred to as banding. For example, you can band salary data into a few
salary range categories.

Although it is not difficult to write code in SPSS or SAS to band a scale variable
into range categories, in SPSS we recommend that you use the Visual Bander, available
on the Transform menu, because it can help you make the best recoding choices by
showing the actual distribution of values and where your selected category boundaries



346

Chapter 19

occur in the distribution. It also provides a number of different banding methods and
can automatically generate descriptive labels for the banded categories. The SPSS
command syntax in this example was generated by the Visual Bander.

*visual_bander.sps.
GET FILE = 'c:\examples\data\employee data.sav'.
***commands generated by Visual Bander***.
RECODE salary

( MISSING = COPY ) ( LO THRU 25000 =1 ) ( LO THRU 50000 =2 )
( LO THRU 75000 =3 ) ( LO THRU HI = 4 )
INTO salary_category.

VARIABLE LABELS salary_category 'Current Salary (Banded)'.
FORMAT salary_category (F5.0).
VALUE LABELS salary_category

1 '<= $25,000'
2 '$25,001 - $50,000'
3 '$50,001 - $75,000'
4 '$75,001+'
0 'missing'.

MISSING VALUES salary_category ( 0 ).
VARIABLE LEVEL salary_category ( ORDINAL ).
EXECUTE.

libname in "c:\examples\data";
proc format;

value salfmt
1='<= $25,000'
2='$25,001 - $50,000'
3='$50,001 - $75,000'
4='$75,001+'
0='missing'
;

run;
data recode;

set in.employee_data;
format salary_category salfmt.;
label salary_category = "Current Salary (Banded)";
if 0<salary and salary<=25000 then salary_category=1;
else if 25000<salary and salary<=50000 then salary_category=2;
else if 50000<salary and salary<=75000 then salary_category=3;
else if 75000<salary then salary_category=4;
else salary_category=salary;

run;

The SPSS Visual Bander generates RECODE command syntax similar to the code
in the previous recoding example. It can also automatically generate appropriate
descriptive value labels (as in this example) for each banded category.



347

SPSS for SAS Programmers

As in the recoding example, SAS uses a series of if/else if/else statements
to accomplish the same thing.

The SPSS RECODE command supports the keywords LO and HI to ensure that
no values are left out of the banding scheme. In SAS, you can obtain similar
functionality with the standard <, <=, >, and >= operators.

Numeric Functions

In addition to simple arithmetic operators (for example, +, -, /, *), you can transform
data values in both SPSS and SAS with a wide variety of functions, including
arithmetic and statistical functions.

*numeric_functions.sps.
DATA LIST LIST (",") /var1 var2 var3 var4.
BEGIN DATA
1, , 3, 4
5, 6, 7, 8
9, , , 12
END DATA.
COMPUTE Square_Root = SQRT(var4).
COMPUTE Remainder = MOD(var4, 3).
COMPUTE Average = MEAN.3(var1, var2, var3, var4).
COMPUTE Valid_Values = NVALID(var1 TO var4).
COMPUTE Trunc_Mean = TRUNC(MEAN(var1 TO var4)).
EXECUTE.

data new;
input var1 var2 var3 var4;
Square_Root=sqrt(var4);
Remainder=mod(var4,3);
x=nmiss(var1,var2,var3,var4);
if x<=1 then Average=mean(var1,var2,var3,var4);
Valid_Values=4-x;
Trunc_Mean=int(mean(var1,var2,var3,var4));

cards;
1 . 3 4
5 6 7 8
9 . . 12
;
run;

SPSS and SAS use the same function names for the square root (SQRT) and
remainder (MOD) functions.



348

Chapter 19

SPSS allows you to specify the minimum number of non-missing values required to
calculate any numeric function. For example, MEAN.3 specifies that at least three
of the variables (or other function arguments) must contain non-missing values.

In SAS, if you want to specify the minimum number of non-missing arguments for
a function calculation, you need to calculate the number of non-missing values
using the function nmiss, and then use this information in an if statement prior
to calculating the function.

The SPSS NVALID function returns the number of non-missing values in an
argument list. To achieve comparable functionality with SAS, you need to use the
NMISS function to calculate the number of missing values and then subtract that
value from the total number of arguments.

The SAS INT function is equivalent to the SPSS TRUNC function.

Random Number Functions

Random value and distribution functions generate random values based on various
distributions.

*random_functons.sps.
NEW FILE.
SET SEED 987987987.
*create 1,000 cases with random values.
INPUT PROGRAM.
- LOOP #I=1 TO 1000.
- COMPUTE Uniform_Distribution = UNIFORM(100).
- COMPUTE Normal_Distribution = RV.NORMAL(50,25).
- COMPUTE Poisson_Distribution = RV.POISSON(50).
- END CASE.
- END LOOP.
- END FILE.
END INPUT PROGRAM.
FREQUENCIES VARIABLES = ALL

/HISTOGRAM /FORMAT = NOTABLE.

data new;
seed=987987987;
do i=1 to 1000;

Uniform_Distribution=100*ranuni(seed);
Normal_Distribution=50+25*rannor(seed);
Poisson_Distribution=ranpoi(seed,50);
output;
end;

run;



349

SPSS for SAS Programmers

Both SAS and SPSS allow you to set the seed to start the random number
generation process.

Both languages allow you to generate random numbers using a wide variety of
statistical distributions. This example generates 1,000 observations using the
uniform distribution with a mean of 100, the normal distribution with a mean of 50
and standard deviation of 25, and the Poisson distribution with a mean of 50.

SPSS allows you to provide parameters for the distribution functions, such as the
mean and standard deviation for the RV.NORMAL function.

SAS functions are generic and require that you use equations to modify the
distributions.

SPSS does not require the seed as a parameter in the random number functions
as does SAS.

String Concatenation

You can combine multiple string and/or numeric values to create new string values.
For example, you could combine three numeric variables for area code, exchange, and
number into one string variable for telephone number with dashes between the values.

*concat_string.sps.
DATA LIST FREE /tel1 tel2 tel3 (3F4).
BEGIN DATA
111 222 3333
222 333 4444
333 444 5555
555 666 707
END DATA.
STRING telephone (A12).
COMPUTE telephone =

CONCAT((STRING(tel1, N3)), "-",
(STRING(tel2, N3)), "-",
(STRING(tel3, N4))).

EXECUTE.

data new;
input tel1 4. tel2 4. tel3 4.;
telephone=

(translate(right(put(tel1,$3.)),'0',' '))||"-"||
(translate(right(put(tel2,$3.)),'0',' '))||"-"||
(translate(right(put(tel3,$4.)),'0',' '))

;
cards;
111 222 3333



350

Chapter 19

222 333 4444
333 444 5555
;
run;

SPSS uses the CONCAT function to concatenate strings together, and SAS uses
“||” for concatenation.

The SPSS STRING function converts a numeric value to a character value, like
the SAS put function.

The SPSS N format converts spaces to zeroes, like the SAS translate function.

String Parsing

In addition to being able to combine strings, you can take them apart. For example,
you could take apart a 12-character telephone number, recorded as a string (because
of the embedded dashes), and create three new numeric variables for area code,
exchange, and number.

DATA LIST FREE (",") /telephone (A16).
BEGIN DATA
111-222-3333
222 - 333 - 4444
333-444-5555

444 - 555-6666
555-666-0707
END DATA.
COMPUTE tel1 =

NUMBER(SUBSTR(telephone, 1, INDEX(telephone, "-")-1), F5).
COMPUTE tel2 =

NUMBER(SUBSTR(telephone, INDEX(telephone, "-")+1,
RINDEX(telephone, "-")-(INDEX(telephone, "-")+1)), F5).

COMPUTE tel3 =
NUMBER(SUBSTR(telephone, RINDEX(telephone, "-")+1), F5).

EXECUTE.
FORMATS tel1 tel2 (N3) tel3 (N4).

data new;
input telephone $16.;
format tel1 tel2 3. tel3 z4.;
tel1=substr(compress(telephone,'- '),1,3);
tel2=substr(compress(telephone,'- '),4,3);
tel3=substr(compress(telephone,'- '),7,4);

cards;
111-222-3333
222 - 333 - 4444



351

SPSS for SAS Programmers

333-444-5555
444 - 555-6666
555-666-0707
;
run;

SPSS uses substring (SUBSTR) and index (INDEX, RINDEX) functions to search the
string for specified characters and to extract the appropriate values.

SAS allows you to name the characters to exclude from a variable using the
compress function and then take a substring (substr) of the resulting value.

The SPSS N format is comparable to the SAS z format. Both formats write leading
zeros.

Working with Dates and Times
Dates and times come in a wide variety of formats, ranging from different display
formats (for example, 10/28/1986 versus 28-OCT-1986) to separate entries for each
component of a date or time (for example, a day variable, a month variable, and a year
variable). Both SPSS and SAS can handle date and times in a variety of formats, and
both applications provide features for performing date/time calculations.

Calculating and Converting Date and Time Intervals

A common date calculation is the elapsed time between two dates and/or times.
Assuming you have assigned the appropriate date, time, or date/time format to the
variables, SPSS and SAS can both perform this type of calculation.

*date_functions.sps.
DATA LIST FREE (",")

/StartDate (ADATE12) EndDate (ADATE12)
StartDateTime(DATETIME20) EndDateTime(DATETIME20)
StartTime (TIME10) EndTime (TIME10).

BEGIN DATA
3/01/2003, 4/10/2003
01-MAR-2003 12:00, 02-MAR-2003 12:00
09:30, 10:15
END DATA.
COMPUTE days = CTIME.DAYS(EndDate-StartDate).
COMPUTE hours = CTIME.HOURS(EndDateTime-StartDateTime).
COMPUTE minutes = CTIME.MINUTES(EndTime-StartTime).
EXECUTE.



352

Chapter 19

data new;
infile cards dlm=',' n=3;
input StartDate : MMDDYY10. EndDate : MMDDYY10.

#2 StartDateTime : DATETIME17. EndDateTime : DATETIME17.
#3 StartTime : TIME5. EndTime : TIME5.
;
days=EndDate-StartDate;
hours=(EndDateTime-StartDateTime)/60/60;
minutes=(EndTime-StartTime)/60;

cards;
3/01/2003, 4/10/2003
01-MAR-2003 12:00, 02-MAR-2003 12:00
09:30, 10:15
;
run;

SPSS stores all date and time values as a number of seconds, and subtracting one
date or time value returns the difference in seconds. You can use CTIME functions
to return the difference as number of days, hours, or minutes.

In SAS, simple dates are stored as a number of days, but times and dates with
a time component are stored as a number of seconds. Subtracting one simple
date from another will return the difference as a number of days. Subtracting
one date/time from another, however, will return the difference as a number of
seconds, and if you want the difference in some other time measurement unit, you
must provide the necessary calculations.

Adding to or Subtracting from One Date to Find Another Date

Another common date/time calculation is adding or subtracting days (or hours,
minutes, and so forth) from one date to obtain another date. For example, let’s say
prospective customers can use your product on a trial basis for 30 days, and you need
to know when the trial period ends—and, just to make it interesting—if the trial period
ends on a Saturday or Sunday, you want to extend it to the following Monday.

*date_functions2.sps.
DATA LIST FREE (" ") /StartDate (ADATE10).
BEGIN DATA
10/29/2003 10/30/2003
10/31/2003 11/1/2003
11/2/2003 11/4/2003
11/5/2003 11/6/2003
END DATA.
COMPUTE expdate = StartDate + TIME.DAYS(30).
FORMATS expdate (ADATE10).
***if expdate is Saturday or Sunday, make it Monday***.



353

SPSS for SAS Programmers

DO IF (XDATE.WKDAY(expdate) = 1).
- COMPUTE expdate = expdate + TIME.DAYS(1).
ELSE IF (XDATE.WKDAY(expdate) = 7).
- COMPUTE expdate = expdate + TIME.DAYS(2).
END IF.
EXECUTE.

data new;
format expdate date10.;

input StartDate : MMDDYY10. @@ ;
expdate=StartDate+30;;

if weekday(expdate)=1 then expdate+1;
else if weekday(expdate)=7 then expdate+2;

cards;
10/29/2003 10/30/2003
10/31/2003 11/1/2003
11/2/2003 11/4/2003
11/5/2003 11/6/2003
;
run;

Since all SPSS date values are stored as a number of seconds, you need to use the
TIME.DAYS function to add or subtract days from a date value. In SAS, simple
dates are stored as a number of days, so you do not need a special function to add
or subtract days.

The SPSS XDATE.WKDAY function is equivalent to the SAS weekday function,
and both return a value of 1 for Sunday and 7 for Saturday.

Extracting Date and Time Information

A great deal of information can be extracted from date and time variables. For
example, in addition to the day, month, and year, a date is associated with a specific
day of the week, week of the year, and quarter.

*date_functions3.sps.
DATA LIST FREE (",")

/StartDateTime (datetime25).
BEGIN DATA
29-OCT-2003 11:23:02
1 January 1998 1:45:01
21/6/2000 2:55:13
END DATA.
COMPUTE dateonly=XDATE.DATE(StartDateTime).
FORMATS dateonly(ADATE10).
COMPUTE hour=XDATE.HOUR(StartDateTime).
COMPUTE DayofWeek=XDATE.WKDAY(StartDateTime).
COMPUTE WeekofYear=XDATE.WEEK(StartDateTime).



354

Chapter 19

COMPUTE quarter=XDATE.QUARTER(StartDateTime).
EXECUTE.

data new;
format dateonly mmddyyy10.;

input StartDateTime & : DATETIME25. ;
dateonly=datepart(StartDateTime);
hour=hour(StartDateTime);

DayofWeek=weekday(dateonly);
quarter=qtr(dateonly);

cards;
29-OCT-2003 11:23:02
;
run;

SPSS uses one main function, XDATE, to extract the date, hour, weekday, week,
and quarter from a datetime value.

SAS uses separate functions to extract the date, hour, weekday, and quarter from a
datetime value.

The SPSS XDATE.DATE function is equivalent to the SAS datepart function.
The SPSS XDATE.HOUR function is equivalent to the SAS hour function.

SAS requires a simple date value (with no time component) to obtain weekday and
quarter information, requiring an extra calculation, whereas SPSS can extract
weekday and quarter directly from a datetime value.

Custom Functions, Job Flow Control, and Global Macro
Variables

The purpose of this section is to introduce users familiar with SAS to capabilities
available with the SPSS-Python Integration Plug-In that allow you to:

Write custom functions as you would with %MACRO.

Control job flow as you would with CALL EXECUTE.

Create global macro variables as you would with SYMPUT.

Pass values to programs as you would with SYSPARM.

The SPSS-Python Integration Plug-In works with SPSS release 14.0.1 or later and
requires only SPSS Base. The SPSS examples in this section assume some familiarity
with Python and the way it can be used with SPSS command syntax. For more



355

SPSS for SAS Programmers

information, see “Getting Started with Python Programming in SPSS” in Chapter
12 on p. 215.

Creating Custom Functions

Both SPSS and SAS allow you to encapsulate a set of commands in a named piece of
code that is callable and accepts parameters that can be used to complete the command
specifications. In SAS, this is done with %MACRO, and in SPSS, this is best done with a
Python user-defined function. To demonstrate this functionality, consider creating a
function that runs a DESCRIPTIVES command in SPSS or the means procedure in
SAS on a single variable. The function has two arguments: the variable name and the
dataset containing the variable.

def prodstats(dataset,product):
spss.Submit(r"""
GET FILE='%(dataset)s'.
DESCRIPTIVES %(product)s.
""" %locals())

libname mydata 'c:\data';
%macro prodstats(dataset=, product=);

proc means data=&dataset;
var &product;

run;
%mend prodstats;

%prodstats(dataset=mydata.sales, product=milk)

The def statement signals the beginning of a Python user-defined function (the
colon at the end of the def statement is required). From within a Python function,
you can execute SPSS commands using the Submit function from the spss
module. The function accepts a quoted string representing an SPSS command and
submits the command text to SPSS for processing. In SAS, you simply include the
desired commands in the macro definition.

The argument product is used to specify the variable for the DESCRIPTIVES
command in SPSS or the means procedure in SAS, and dataset specifies the
dataset. The expressions %(product)s and %(dataset)s in the SPSS code
specify to substitute a string representation of the value of product and the value
of dataset, respectively. For more information, see “Dynamically Specifying
Command Syntax Using String Substitution” in Chapter 13 on p. 234.



356

Chapter 19

In SPSS, the GET command is used to retrieve the desired dataset. If you omit
this command, the function will attempt to run a DESCRIPTIVES command on
the active dataset.

To run the SAS macro, you simply call it. In the case of SPSS, once you’ve created
a Python user-defined function, you typically include it in a Python module on the
Python search path. Let’s say you include the prodstats function in a module
named myfuncs. You would then call the function with code such as:

myfuncs.prodstats("c:/data/sales.sav","milk")

assuming that you had first imported myfuncs. Note that since the Python function
prodstats makes use of a function from the spss module, the module myfuncs
would need to include the statement import spss prior to the function definition.

For more information on creating Python functions for use with SPSS, see “Creating
User-Defined Functions in Python” on p. 239. For more on the Submit function, see
“Submitting Commands to SPSS” on p. 217, or see Appendix A.

Job Flow Control

Both SPSS and SAS allow you to control the flow of a job, conditionally executing
selected commands. In SAS, you can conditionally execute commands with CALL

EXECUTE. The equivalent in SPSS is to drive SPSS command syntax from Python
using the Submit function from the spss module. Information needed to determine
the flow is retrieved from SPSS into Python. As an example, consider the task of
conditionally generating a report of bank customers with low balances only if there are
such customers at the time the report is to be generated.



357

SPSS for SAS Programmers

BEGIN PROGRAM.
import spss, spssdata
spss.Submit("GET FILE='c:/data/custbal.sav'.")
dataObj=spssdata.Spssdata(indexes=['acctbal'])
report=False
for row in dataObj:

if row.acctbal<200:
report=True
break

dataObj.close()
if report:

spss.Submit("""
TEMPORARY.
SELECT IF acctbal<200.
SUMMARIZE
/TABLES=custid custname acctbal
/FORMAT=VALIDLIST NOCASENUM NOTOTAL
/TITLE='Customers with Low Balances'.
""")

END PROGRAM.

libname mydata 'c:\data';
data lowbal;

set mydata.custbal end=final;
if acctbal<200 then

do;
n+1;
output;

end;
if final and n then call execute

("
proc print data=lowbal;

var custid custname acctbal;
title 'Customers with Low Balances';

run;
");

run;

Both SPSS and SAS use a conditional expression to determine whether to generate
the report. In the case of SPSS, this is a Python if statement, since the execution
is being controlled from Python. In SPSS, the command syntax to run the report
is passed as an argument to the Submit function in the spss module. In SAS,
the command to run the report is passed as an argument to the call execute
function.

The SPSS code makes use of functions in the spss and spssdata modules,
so an import statement is included for them. The spssdata module is a
supplementary module available for download from SPSS Developer Central
at www.spss.com/devcentral. It builds on the functionality available in the



358

Chapter 19

SPSS-Python Integration Plug-In to provide a number of features that simplify the
task of working with case data. For more information, see “Using the spssdata
Module” in Chapter 15 on p. 280.

The SAS job reads through all records in custbal and writes those records that
represent customers with a balance of less than 200 to the dataset lowbal. In
contrast, the SPSS code does not create a separate dataset but simply filters the
original dataset for customers with a balance less than 200. The filter is executed
only if there is at least one such customer when the report needs to be run. To
determine if any customers have a low balance, data for the single variable acctbal
(from custbal) is read into Python one case at a time, using the Spssdata class
from the spssdata module. If a case with a low balance is detected, the indicator
variable report is set to true, the break statement terminates the loop used to read
the data, and the job proceeds to generating the report.

Creating Global Macro Variables

Both SPSS and SAS have the ability to create global macro variables. In SAS,
this is done with SYMPUT, whereas in SPSS, this is done from Python using the
SetMacroValue function in the spss module. As an example, consider sales data
that has been pre-aggregated into a dataset—let’s call it regionsales—that contains
sales totals by region. We’re interested in using these totals in a set of analyses and
find it convenient to store them in a set of global variables whose names are the regions
with a prefix of region_.

BEGIN PROGRAM.
import spss, spssdata
spss.Submit("GET FILE='c:/data/regionsales.sav'.")
dataObj=spssdata.Spssdata()
data=dataObj.fetchall()
dataObj.close()
for row in data:

macroValue=row.total
macroName="!region_" + row.region
spss.SetMacroValue(macroName, macroValue)

END PROGRAM.

libname mydata 'c:\data';
data _null_;

set mydata.regionsales;
call symput('region_'||region,trim(left(total)));

run;



359

SPSS for SAS Programmers

The SetMacroValue function from the spss module takes a name and a value
(string or numeric) and creates an SPSS macro of that name that expands to
the specified value (a numeric value provided as an argument is converted to a
string). The availability of this function from Python means that you have great
flexibility in specifying the value of the macro. Although the SetMacroValue
function is called from Python, it creates an SPSS macro that is then available to
SPSS command syntax outside of a BEGIN PROGRAM block. The convention
in SPSS—followed in this example—is to prefix the name of a macro with
the ! character, although this is not required. For more information on the
SetMacroValue function, see Appendix A.

Both SetMacroValue and symput create a macro variable that resolves to a
string value, even if the value passed to the function was numeric. In SAS, the
string is right-aligned and may require trimming to remove excess blanks. This
is provided by the combination of the left and trim functions. SPSS does not
require this step.

The SAS code utilizes a data step to read the regionsales dataset, but there is no
need to create a resulting dataset, so _null_ is used. Likewise, the SPSS version
doesn’t need to create a dataset. It uses the spssdata module to read the data
in regionsales and create a separate SPSS macro for each case read. For more
information on the spssdata module, see “Using the spssdata Module” on p. 280.

Setting Global Macro Variables to Values from the Environment

SPSS and SAS both support obtaining values from the operating environment and
storing them to global macro variables. In SAS, this is accomplished by using the
SYSPARM option on the command line to pass a value to a program. The value is
then available as the global macro variable &sysparm. In SPSS, you first set an
operating system environment variable that you can then retrieve using the Python
os module—a built-in module that is always available in Python. Values obtained
from the environment can be, but need not be, typical ones, such as a user name. For
example, you may have a financial analysis program that uses the current interest rate
as an input to the analysis, and you’d like to pass the value of the rate to the program.
In this example, we’re imagining passing a rate that we’ve set to a value of 4.5.



360

Chapter 19

BEGIN PROGRAM.
import spss,os
val = os.environ['rate']
spss.SetMacroValue("!rate",val)
END PROGRAM.

sas C:\Work\SAS\prog1.sas -sysparm 4.5

In the SPSS version, you first include an import statement for the Python os
module. To retrieve the value of a particular environment variable, simply specify
its name in quotes, as in: os.environ['rate'].

With SPSS, once you’ve retrieved the value of an environment variable, you can
set it to a Python variable and use it like any other variable in a Python program.
This allows you to control the flow of an SPSS command syntax job using values
retrieved from the environment. And you can use the SetMacroValue function
(discussed in the previous example) to create an SPSS macro that resolves to
the retrieved value and can be used outside of a BEGIN PROGRAM block. In the
current example, an SPSS macro named !rate is created from the value of an
environment variable named rate.



Appendix

A
Python Functions

The SPSS-Python package contains functions that facilitate the process of using
Python programming features with SPSS command syntax, including functions that:

Build and run SPSS command syntax

spss.Submit

Get information about data files in the current SPSS session

spss.CreateXPathDictionary

spss.EvaluateXPath

spss.GetCaseCount

spss.GetVariableCount

spss.GetVariableFormat

spss.GetVariableLabel

spss.GetVariableMeasurementLevel

spss.GetVariableName

spss.GetVariableType

spss.GetXmlUtf16

Get data from the active dataset

spss.Cursor

Get output results

spss.EvaluateXPath

spss.GetXmlUtf16

361



362

Appendix A

Create macro variables

spss.SetMacroValue

Get error information

spss.GetLastErrorLevel

spss.GetLastErrorMessage

To display a list of all available SPSS Python functions, with brief descriptions, use
the Python help function, as in:

BEGIN PROGRAM.
import spss
help(spss)
END PROGRAM.

spss.CreateXPathDictionary Function

spss.CreateXPathDictionary(handle). Creates an XPath dictionary DOM for the
active dataset that can be accessed with XPath expressions. The argument is a
handle name, used to identify this DOM in subsequent spss.EvaluateXPath and
spss.DeleteXPathHandle functions. It cannot be the name of an existing handle.

Example

handle='demo'
spss.CreateXPathDictionary(handle)

The XPath dictionary DOM for the current active dataset is assigned
the handle name demo. Any subsequent spss.EvaluateXPath or
spss.DeleteXPathHandle functions that reference this dictionary DOM must
use this handle name.

spss.Cursor Function

spss.Cursor(n). Returns rows of data from the active dataset as tuples, where n is a tuple
of variable index values. Index values represent position in the active dataset, starting
with 0 for the first variable in file order.

The argument is optional; if it’s omitted, all variables are returned.



363

Python Functions

String values are right-padded to the defined width of the string variable.

System- and user-missing values are returned as Python data type None.

You cannot use the spss.Submit function while a data cursor is open. You must
close or delete the cursor first.

Only one data cursor can be open at any point in the program block. To define a
new data cursor, you must first close or delete the previous one.

Example

*python_cursor.sps.
DATA LIST FREE /var1 (F) var2 (A2) var3 (F).
BEGIN DATA
11 ab 13
21 cd 23
31 ef 33
END DATA.
BEGIN PROGRAM.
import spss
dataCursor=spss.Cursor()
oneRow=dataCursor.fetchone()
dataCursor.close()
i=([0])
dataCursor=spss.Cursor(i)
oneVar=dataCursor.fetchall()
dataCursor.close()
print "One row (case): ", oneRow
print "One column (variable): ", oneVar
END PROGRAM.

Result

One row (case): (11.0, 'ab', 13.0)
One column (variable): ((11.0,), (21.0,), (31.0,))

Example

*python_cursor_sysmis.sps.
*System- and user-missing values.
DATA LIST LIST (',') /numVar (f) stringVar (a4).
BEGIN DATA
1,a
,b
3,,
4,d
END DATA.
MISSING VALUES stringVar (' ').



364

Appendix A

BEGIN PROGRAM.
import spss
dataCursor=spss.Cursor()
print dataCursor.fetchall()
dataCursor.close()
END PROGRAM.

Result

((1.0, 'a '), (None, 'b '), (3.0, None), (4.0, 'd '))

spss.Cursor Methods

.close(). Closes the cursor. You cannot use the spss.Submit function while a data
cursor is open. You must close or delete the cursor first.

.fetchone(). Fetches the next row (case) from the active dataset. The result is a single
tuple or Python data type None after the last row has been read.

.fetchmany(n). Fetches the next n cases from the active dataset, where n is a positive
integer. The result is a list of tuples. If the value of n is greater than the number of
remaining data rows, it returns the value of all the remaining rows. If there are no
remaining rows, the result is an empty tuple.

.fetchall(). Fetches all (remaining) rows from the active dataset. The result is a list of
tuples. If there are no remaining rows, the result is an empty tuple.

.reset(). Resets the cursor to the first row.

Example: fetchone

*python_cursor_fetchone.sps.
DATA LIST FREE /var1 var2 var3.
BEGIN DATA
1 2 3
4 5 6
END DATA.
BEGIN PROGRAM.
import spss
dataCursor=spss.Cursor()
firstRow=dataCursor.fetchone()
secondRow=dataCursor.fetchone()
thirdRow=dataCursor.fetchone()



365

Python Functions

print "First row: ",firstRow
print "Second row ",secondRow
print "Third row...there is NO third row: ",thirdRow
dataCursor.close()
END PROGRAM.

Result

First row: (1.0, 2.0, 3.0)
Second row (4.0, 5.0, 6.0)
Third row...there is NO third row: None

Example: fetchmany

*python_cursor_fetchmany.sps.
DATA LIST FREE /var1 (F) var2 (A2) var3 (F).
BEGIN DATA
11 ab 13
21 cd 23
31 ef 33
END DATA.
BEGIN PROGRAM.
import spss
dataCursor=spss.Cursor()
n=2
print dataCursor.fetchmany(n)
print dataCursor.fetchmany(n)
print dataCursor.fetchmany(n)
dataCursor.close()
END PROGRAM.

Result

((11.0, 'ab', 13.0), (21.0, 'cd', 23.0))
((31.0, 'ef', 33.0),)
()

Example: fetchall

*python_cursor_fetchall.sps.
DATA LIST FREE /var1 (F) var2 (A2) var3 (F).
BEGIN DATA
11 ab 13
21 cd 23
31 ef 33
END DATA.
BEGIN PROGRAM.



366

Appendix A

import spss
dataCursor=spss.Cursor()
dataFile=dataCursor.fetchall()
for i in enumerate(dataFile):

print i
print dataCursor.fetchall()
dataCursor.close()
END PROGRAM.

Result

(0, (11.0, 'ab', 13.0))
(1, (21.0, 'cd', 23.0))
(2, (31.0, 'ef', 33.0))
()

Example: fetchall with Variable Index

*python_cursor_fetchall_index.sps.
DATA LIST FREE /var1 var2 var3.
BEGIN DATA
1 2 3
1 4 5
2 5 7
END DATA.
BEGIN PROGRAM.
import spss
i=([0])
dataCursor=spss.Cursor(i)
oneVar=dataCursor.fetchall()
uniqueCount=len(set(oneVar))
print oneVar
print spss.GetVariableName(0), " has ", uniqueCount, " unique values."
dataCursor.close()
END PROGRAM.

Result

((1.0,), (1.0,), (2.0,))
var1 has 2 unique values.



367

Python Functions

spss.DeleteXPathHandle Function
spss.DeleteXPathHandle(handle). Deletes the XPath dictionary DOM or output DOM
with the specified handle name. The argument is a handle name that was defined with a
previous spss.CreateXPathDictionary function or an SPSS OMS command.

Example

handle = 'demo'
spss.DeleteXPathHandle(handle)

spss.EvaluateXPath Function
spss.EvaluateXPath(handle,context,xpath). Evaluates an XPath expression against
a specified XPath DOM and returns the result as a list. The argument handle
specifies the particular XPath DOM and must be a valid handle name defined by a
previous spss.CreateXPathDictionary function or SPSS OMS command. The
argument context defines the XPath context for the expression and should be set to
"/dictionary" for a dictionary DOM or "/outputTree" for an output XML
DOM created by the OMS command. The argument xpath specifies the remainder of
the XPath expression and must be quoted.

Example

#retrieve a list of all variable names for the active dataset.
handle='demo'
spss.CreateXPathDictionary(handle)
context = "/dictionary"
xpath = "variable/@name"
varnames = spss.EvaluateXPath(handle,context,xpath)

Example

*python_EvaluateXPath.sps.
*Use OMS and a Python program to determine the number of uniques values

for a specific variable.
OMS SELECT TABLES

/IF COMMANDs=['Frequencies'] SUBTYPES=['Frequencies']
/DESTINATION FORMAT=OXML XMLWORKSPACE='freq_table'.

FREQUENCIES VARIABLES=var1.
OMSEND.

BEGIN PROGRAM.



368

Appendix A

import spss
handle='freq_table'
context="/outputTree"
#get rows that are totals by looking for varName attribute
#use the group element to skip split file category text attributes
xpath="//group/category[@varName]/@text"
values=spss.EvaluateXPath(handle,context,xpath)
#the "set" of values is the list of unique values
#and the length of that set is the number of unique values
uniqueValuesCount=len(set(values))
END PROGRAM.

Note: In the SPSS documentation, XPath examples for the OMS command use a
namespace prefix in front of each element name (the prefix oms: is used in the OMS
examples). Namespace prefixes are not valid for EvaluateXPath.

Documentation of the dictionary schema is available in dictionary-1.0.htm, located in
the \help\programmability\ folder in your SPSS application directory, or accessed by
choosing the Programmability option from the Help menu.

spss.GetCaseCount Function

spss.GetCaseCount(). Returns the number of cases (rows) in the active dataset.

Example

#python_GetCaseCount.sps
#build SAMPLE syntax of the general form:
#SAMPLE [NCases] FROM [TotalCases]
#Where Ncases = 10% truncated to integer
TotalCases=spss.GetCaseCount()
NCases=int(TotalCases/10)
command1="SAMPLE " + str(NCases) + " FROM " + str(TotalCases) + "."
command2="Execute."
spss.Submit([command1, command2])

spss.GetHandleList Function

spss.GetHandleList(). Returns a list of currently defined dictionary and output XML
DOMs available for use with spss.EvaluateXpath.



369

Python Functions

spss.GetLastErrorLevel and spss.GetLastErrorMessage
Functions

spss.GetLastErrorLevel(). Returns a number corresponding to an error in the preceding
SPSS package function.

For the spss.Submit function, it returns the maximum SPSS error level for the
submitted SPSS commands. SPSS error levels range from 1 to 5. An SPSS error
level of 3 or higher causes an exception in Python.

For other functions, it returns an error code with a value greater than 5.

Error codes from 6 to 22 are from the SPSS XD API.

Error codes from 1000 to 1013 are from the SPSS-Python integration package.

SPSS error levels (return codes), their meanings, and any associated behaviors are
shown in the following table:

Table A-1
SPSS error levels

Value Definition Behavior

0 none command runs

1 comment command runs

2 warning command runs

3 serious error command doesn’t run, subsequent commands are
processed

4 fatal error command doesn’t run, subsequent commands are not
processed, and the current job terminates

5 catastrophic error command doesn’t run, subsequent commands are not
processed, and the SPSS processor terminates

spss.GetLastErrorMessage(). Returns a text message corresponding to an error in the
preceding SPSS package function.

For the spss.Submit function, it returns text that indicates the severity level of
the error for the last submitted SPSS command.

For other functions in the SPSS package, it returns the error message text from the
SPSS XD API or from Python.

Example

*python_GetLastErrorLevel.sps.



370

Appendix A

DATA LIST FREE/var1 var2.
BEGIN DATA
1 2 3 4
END DATA.
BEGIN PROGRAM.
try:

spss.Submit("""
COMPUTE newvar=var1*10.
COMPUTE badvar=nonvar/4.
FREQUENCIES VARIABLES=ALL.
""")
except:

errorLevel=str(spss.GetLastErrorLevel())
errorMsg=spss.GetLastErrorMessage()
print("Error level " + errorLevel + ": " + errorMsg)
print("At least one command did not run.")

END PROGRAM.

The first COMPUTE command and the FREQUENCIES command will run without
errors, generating error values of 0.

The second COMPUTE command will generate a level 3 error, triggering the
exception handling in the except clause.

spss.GetVariableCount Function
spss.GetVariableCount(). Returns the number of variables in the active dataset.

Example

#python_GetVariableCount.sps
#build a list of all variables by using the value of
#spssGetVariableCount to set the number of for loop interations
varcount=spss.GetVariableCount()
varlist=[]
for i in xrange(varcount):

varlist.append(spss.GetVariableName(i))

spss.GetVariableFormat Function
GetVariableFormat(index). Returns a string containing the display format for the
variable in the active dataset indicated by the index value. The argument is the index
value. Index values represent position in the active dataset, starting with 0 for the
first variable in file order.



371

Python Functions

The character portion of the format string is always returned in all upper case.

Each format string contains a numeric component after the format name that
indicates the defined width, and optionally, the number of decimal positions for
numeric formats. For example, A4 is a string format with a maximum width of
four bytes, and F8.2 is a standard numeric format with a display format of eight
digits, including two decimal positions and a decimal indicator.

Format Values

A. Standard characters.

ADATE. American date of the general form mm/dd/yyyy.

JDATE. Julian date of the general form yyyyddd.

AHEX. Hexadecimal characters.

CCA. Custom currency format 1.

CCB. Custom currency format 2.

CCC. Custom currency format 3.

CCD. Custom currency format 4.

CCE. custom currency format 5.

COMMA. Numbers with commas as grouping symbol and period as decimal
indicator. For example: 1,234,567.89.

DATE. International date of the general form dd-mmm-yyyy.

DATETIME. Date and time of the general form dd-mmm-yyyy hh:mm:ss.ss.

DOLLAR. Numbers with a leading dollar sign ($), commas as grouping symbol, and
period as decimal indicator. For example: $1,234,567.89.

F. Standard numeric.

IB. Integer binary.

PIBHEX. Hexadecimal of PIB (positive integer binary).

DOT. Numbers with period as grouping symbol and comma as decimal indicator.
For example: 1.234.567,89

DTIME. Days and time of the general form dd hh:mm:ss.ss.

E. Scientific notation.

EDATE. European date of the general form dd/mm/yyyy.



372

Appendix A

MONTH. Month.

MOYR. Month and year.

N. Restricted numeric.

P. Packed decimal.

PIB. Positive integer binary.

PK. Unsigned packed decimal.

QYR. Quarter and year of the general form qQyyyy.

WKYR. Week and year.

PCT. Percentage sign after numbers.

RB. Real binary.

RBHEX. Hexadecimal of RB (real binary).

SDATE. Sortable date of the general form yyyy/mm/dd.

TIME. Time of the general form hh:mm:ss.ss.

WKDAY. Day of the week.

Z. Zoned decimal.

Example

*python_GetVariableFormat.sps.
DATA LIST FREE

/numvar (F4) timevar1 (TIME5) stringvar (A2) timevar2 (TIME12.2).
BEGIN DATA
1 10:05 a 11:15:33.27
END DATA.

BEGIN PROGRAM.
import spss
#create a list of all formats and a list of time format variables
varcount=spss.GetVariableCount()
formatList=[]
timeVarList=[]
for i in xrange(varcount):

formatList.append(spss.GetVariableFormat(i))
#check to see if it's a time format
if spss.GetVariableFormat(i).find("TIME")==0:

timeVarList.append(spss.GetVariableName(i))
print formatList
print timeVarList
END PROGRAM.



373

Python Functions

spss.GetVariableLabel Function

spss.GetVariableLabel(index). Returns a character string containing the variable label
for the variable in the active dataset indicated by the index value. The argument is the
index value. Index values represent position in the active dataset, starting with 0 for
the first variable in file order. If the variable doesn’t have a defined value label, a
null string is returned.

Example

#create a list of all variable labels
varcount=spss.GetVariableCount()
labellist=[]
for i in xrange(varcount):

labellist.append(spss.GetVariableLabel(i))

spss.GetVariableMeasurementLevel Function

spss.GetVariableMeasurementLevel(index). Returns a string value that indicates the
measurement level for the variable in the active dataset indicated by the index
value. The argument is the index value. Index values represent position in the active
dataset, starting with 0 for the first variable in file order. The value returned can be:
"nominal", "ordinal", "scale", or "unknown".

“Unknown” occurs only for numeric variables prior to the first data pass when the
measurement level has not been explicitly set, such as data read from an external
source or newly created variables. The measurement level for string variables is
always known.

Example

#build a string containing scale variable names
varcount=spss.GetVariableCount()
ScaleVarList=''
for i in xrange(varcount):

if spss.GetVariableMeasurementLevel(i)=="scale":
ScaleVarList=ScaleVarList + " " + spss.GetVariableName(i)



374

Appendix A

spss.GetVariableName Function

GetVariableName(index). Returns a character string containing the variable name for
the variable in the active dataset indicated by the index value. The argument is the
index value. Index values represent position in the active dataset, starting with 0 for the
first variable in file order.

Example

#python_GetVariableName.sps
#get names of first and last variables in the file
#last variable is index value N-1 because index values start at 0
firstVar=spss.GetVariableName(0)
lastVar=spss.GetVariableName(spss.GetVariableCount()-1)
print firstVar, lastVar
#sort the data file in alphabetic order of variable names
varlist=[]
varcount=spss.GetVariableCount()
for i in xrange(varcount):

varlist.append(spss.GetVariableName(i))
sortedlist=' '.join(sorted(varlist))
spss.Submit(

["ADD FILES FILE=* /KEEP ",sortedlist, ".", "EXECUTE."])

spss.GetVariableType Function

GetVariableType(index). Returns 0 for numeric variables or the defined length for string
variables for the variable in the active dataset indicated by the index value. The
argument is the index value. Index values represent position in the active dataset,
starting with 0 for the first variable in file order.

Example

#python_GetVariableType.sps
#create separate strings of numeric and string variables
numericvars=''
stringvars=''
varcount=spss.GetVariableCount()
for i in xrange(varcount):

if spss.GetVariableType(i) > 0:
stringvars=stringvars + " " + spss.GetVariableName(i)

else:
numericvars=numericvars + " " + spss.GetVariableName(i)



375

Python Functions

spss.GetXmlUtf16 Function

spss.GetXmlUtf16(handle, filespec). Writes the XML for the specified handle (dictionary
or output XML) to a file or returns the XML if no filename is specified. When writing
and debugging XPath expressions, it is often useful to have a sample file that shows
the XML structure. This function is particularly useful for dictionary DOMs, since
there aren’t any alternative methods for writing and viewing the XML structure. (For
output XML, the OMS command can also write XML to a file.) You can also use this
function to retrieve the XML for a specified handle, enabling you to process it with
third-party utilities like XML parsers.

Example

handle = "activedataset"
spss.CreateXPathDictionary(handle)
spss.GetXmlUtf16(handle,'c:/temp/temp.xml')

spss.IsOutputOn Function

spss.IsOutputOn(). Returns the status of SPSS output display in Python. The result is
Boolean—true if output display is on in Python, false if it is off. For more information,
see “spss.SetOutput Function” on p. 377.

Example

import spss
spss.SetOutput("on")
if spss.IsOutputOn():

print "The current spssOutput setting is 'on'."
else:

print "The current spssOutput setting is 'off'."

spss.PyInvokeSpss.IsXDriven Function

spss.PyInvokeSpss.IsXDriven(). Checks to see how the SPSS backend is being run. The
result is 1 if Python is controlling the SPSS backend or 0 if SPSS is controlling the
SPSS backend.



376

Appendix A

Example

import spss
spss.Submit("""
GET FILE
'c:/program files/spss/employee data.sav'.

""")
isxd = spss.PyInvokeSpss.IsXDriven()
if isxd==1:

print "Python is running SPSS."
else:

print "SPSS is running Python."

spss.SetMacroValue Function

spss.SetMacroValue(name, value). Defines an SPSS macro variable that can be used
outside a program block in SPSS command syntax. The first argument is the macro
name, and the second argument is the macro value. Both arguments must resolve
to strings.

Example

*python_SetMacroValue.sps.
DATA LIST FREE /var1 var2 var3 var4.
begin data
1 2 3 4
end data.
VARIABLE LEVEL var1 var3 (scale) var2 var4 (nominal).

BEGIN PROGRAM.
import spss
macroValue=[]
macroName="!NominalVars"
varcount=spss.GetVariableCount()
for i in xrange(varcount):

if spss.GetVariableMeasurementLevel(i)=="nominal":
macroValue.append(spss.GetVariableName(i))

spss.SetMacroValue(macroName, macroValue)
END PROGRAM.
FREQUENCIES VARIABLES=!NominalVars.



377

Python Functions

spss.SetOutput Function
spss.SetOutput(“value”). Controls the display of SPSS output in Python when running
SPSS from Python. Output is displayed as standard output, and charts and classification
trees are not included. When running Python from SPSS within program blocks
(BEGIN PROGRAM-END PROGRAM), this function has no effect. The value of the
argument is a quoted string:

“on”. Display SPSS output in Python.

“off”. Do not display SPSS output in Python.

Example

import spss
spss.SetOutput("on")

spss.StopSPSS Function
spss.StopSPSS(). Stops SPSS, ending the SPSS session. The function has no arguments.

This function is ignored when running Python from SPSS (within program blocks
defined by BEGIN PROGRAM-END PROGRAM).

When running SPSS from Python, this function ends the SPSS session, and any
subsequent spss.Submit functions that restart SPSS will not have access to the
active dataset or to any other session-specific settings (for example, OMS output
routing commands) from the previous session.

Example: Running SPSS from Python

#run_spss_from_python.py
import spss
#start SPSS and run some commands
#including one that defines an active dataset
spss.Submit("""
GET FILE 'c:/program files/spss/employee data.sav'.
FREQUENCIES VARIABLES=gender jobcat.
""")
#shutdown SPSS
spss.StopSPSS()
#insert bunch of Python statements
#start SPSS again and run some commands without defining
#an active dataset results in an error
spss.Submit("""
FREQUENCIES VARIABLES=gender jobcat.

         """) 



378

Appendix A

Example: Running Python from SPSS

*run_python_from_spss.sps.
BEGIN PROGRAM.
import spss
#start SPSS and run some commands
#including one that defines an active dataset
spss.Submit("""
GET FILE 'c:/program files/spss/employee data.sav'.
FREQUENCIES VARIABLES=gender jobcat.
""")
#following function is ignored when running Python from SPSS
spss.StopSPSS()
#active dataset still exists and subsequent spss.Submit functions
#will work with that active dataset.
spss.Submit("""
FREQUENCIES VARIABLES=gender jobcat.
""")
END PROGRAM.

spss.Submit Function
spss.Submit(command text). Submits the command text to SPSS for processing. The
argument can be a quoted string, a list, or a tuple.

The argument should resolve to one or more complete SPSS commands.

For lists and tuples, each element must resolve to a string.

You can also use the Python triple-quoted string convention to specify blocks of
SPSS commands on multiple lines that more closely resemble the way you might
normally write command syntax.

If SPSS is not currently running (when running SPSS from Python), spss.Submit
will start the SPSS backend processor.

Example

*python_Submit.sps.
BEGIN PROGRAM.
import spss
#run a single command
spss.Submit("DISPLAY NAMES.")
#run two commands



379

Python Functions

spss.Submit(["DISPLAY NAMES.", "SHOW $VARS."])

#build and run two commands
command1="FREQUENCIES VARIABLES=var1."
command2="DESCRIPTIVES VARIABLES=var3."
spss.Submit([command1, command2])
END PROGRAM.

Example: Triple-Quoted Strings

*python_Submit_triple_quote.sps.
BEGIN PROGRAM.
import spss
file="c:/program files/spss/tutorial/sample_files/demo.sav"
varlist="marital gender inccat"
spss.Submit("""
GET FILE='%s'.
FREQUENCIES VARIABLES=%s

/STATISTICS NONE
/BARCHART.

""" %(file,varlist))
END PROGRAM.

Within the triple-quoted string, %s is used for string substitution; thus, you can insert
Python variables that resolve to strings in the quoted block of commands.





Index

active dataset

reading into Python, 273, 362
ADD DOCUMENT (command), 103
ADD FILES (command), 73
ADD VALUE LABELS (command), 99
AGGREGATE (command), 79
aggregating data, 79
APPLY DICTIONARY (command), 102
Attributes method, 268
automation objects in Python, 307
average

mean, 110

banding scale variables, 106
BEGIN PROGRAM (command), 215, 224
bootstrapping

with OMS, 166

case

changing case of string values, 113
case count, 368
case number

system variable $casenum, 16
$casenum

with SELECT IF command, 16
cases

case number, 16
weighting cases to replicate crosstabulation, 82

CASESTOVARS (command), 86
categorical variables, 100
cleaning data, 129, 136
close method, 364

CloseDesignatedOutput method, 302
combining data files, 69
command syntax

invoking command file with INSERT command,
20

syntax rules for INSERT files, 20
commands

displaying in the log, 8
COMMENT (command), 17

macro names, 17
comments, 17
COMPUTE (command), 109
CONCAT (function), 114
concatenating string values, 113
conditional loops, 155
conditional transformations, 140
connect string

reading databases, 26
CreateDatasetOutput, 291
CreateXMLOutput, 291
CreateXPathDictionary, 264, 362
CSV data, 41
CTIME.DAYS (function), 123
CTIME.HOURS (function), 124
CTIME.MINUTES (function), 124
Cursor class, 362

close method, 364
fetchall method, 364
fetchmany method, 364
fetchone method, 364

381



382

Index

data

fetching data in Python, 273, 362
reading active dataset into Python, 273, 362

data files

activating an open dataset, 65
aggregating, 79
making cases from variables, 89
making variables from cases, 86
merging, 69, 73
multiple open datasets, 65
read-only, 10
saving output as SPSS-format data files, 162
transposing, 85
updating, 77

DATA LIST (command)

delimited data, 38
fixed-width data, 42
freefield data, 38

data types, 257, 374
databases

connect string, 26
Database Wizard, 25
GET DATA (command), 25
installing drivers, 23
outer joins, 28
reading data, 23
reading multiple tables, 27
selecting tables, 26
SQL statements, 26
writing data to a database, 189

DATAFILE ATTRIBUTE (command), 103
datafile attributes

retrieving, 268
DATASET ACTIVATE (command), 65
DATASET COPY (command), 65
DATASET NAME (command), 65
DATE.MDY (function), 123

DATE.MOYR (function), 123
dates, 118

combining multiple date components, 122
computing intervals, 123
extracting date components, 126
functions, 122
input and display formats, 119
reading datetime values into Python, 283

days

calculating number of, 125
DeleteXPathHandle, 287, 367
DETECTANOMALY (command), 136
dictionary

CreateXPathDictionary, 264, 362
reading SPSS dictionary information in Python,
258, 264, 367

writing to an XML file, 375
DO IF (command), 140

conditions that evaluate to missing, 142
DO REPEAT (command), 144
duplicate cases

filtering, 133
finding, 133

error handling in Python, 227, 243
error messages, 228, 369
EvaluateXPath, 287, 367
Excel

reading Excel files, 30
saving data in Excel format, 189

EXECUTE (command), 14
executing SPSS commands in Python, 217, 378
ExportDesignatedOutput method, 302
exporting

data and results, 161
data in Excel format, 189
data in SAS format, 186



383

Index

data in Stata format, 187
data to a database, 189
HTML, 161
Output Management System, 161
text, 161
XML, 161

fetchall method, 364
fetching data in Python, 273, 362
fetchmany method, 364
fetchone method, 364
FILE HANDLE (command)

defining wide records with LRCL, 47
FILE LABEL (command), 103
file properties, 103
FILTER (command), 134, 143
filtering duplicates, 133
FLIP (command), 85
format of variables, 254, 370
FORMATS (command), 120
functions

arithmetic, 110
date and time, 122
random distribution, 111
statistical, 110

GET DATA (command)

TYPE=ODBC subcommand, 25
TYPE=TXT subcommand, 41
TYPE=XLS subcommand, 30

GetCaseCount, 368
GetDesignatedOutput method, 302, 304, 307, 310
GetHandleList, 368
GetLastErrorlevel, 369
GetLastErrorMessage, 369
GetSPSSInstallDir, 241

GetValuesFromXMLWorkspace, 221, 291
GetVariableCount, 251, 370
GetVariableFormat, 254, 370
GetVariableLabel, 256, 373
GetVariableMeasurementLevel, 253, 373
GetVariableName, 251, 374
GetVariableNamesList, 262
GetVariableType, 257, 374
GetXmlUtf16, 264, 290, 375
grouped text data, 51

hierarchical text data, 54
HTML

exporting output in HTML format, 192

IDE

using a Python IDE to drive SPSS, 228
IF (command), 140
if/then/else logic, 140
importing data, 23

Excel, 30
SAS format, 61
text, 36

INDEX (function), 117
INSERT (command), 20
INSERT files

command syntax rules, 20
insert method

PivotTable class, 304
ViewerText class, 310

invalid values

excluding, 132
finding, 129

IsOutputOn, 375



384

Index

labels

value, 98, 264
variable, 98, 256, 373

LAG (function), 14
LAST (subcommand)

MATCH FILES command, 134
leading zeros

preserving with N format, 114
level of measurement, 100
log

displaying commands, 8
logical variables, 140
long records

defining with FILE HANDLE command, 47
lookup file, 72
loops

conditional, 155
default maximum number of loops, 158
indexing clause, 152
LOOP (command), 149
nested, 152
using XSAVE to build a data file, 156

LOWER (function), 113

macro variables in Python, 225, 376
macros

macro names in comments, 17
MATCH FILES (command), 72

LAST subcommand, 134
MEAN (function), 110
measurement level, 100, 253, 373
merging data files, 69

same cases, different variables, 69
same variables, different cases, 73
table lookup file, 72

missing values

in DO IF structures, 142

retrieving user missing value definitions, 268
user-missing, 99

MISSING VALUES (command), 17, 99
MissingValues method, 268
mixed format text data, 50
MOD (function), 110
modulus, 110
multiple data sources, 65

N format, 114
names of variables, 251, 374
nested loops, 152
nested text data, 54
nominal variables, 100
normal distribution, 112
NUMBER (function), 114, 121
number of cases (rows), 368
number of variables, 251, 370
numeric variables, 257, 374
NVALID (function), 110

ODBC, 23
installing drivers, 23

OLE DB, 24
OMS

bootstrapping, 166
using XSLT with OXML, 171

OMS (command)

exporting results, 161
ordinal variables, 100
outer joins

reading databases, 28
output

reading SPSS output results in Python, 221, 287,
291, 367

using as input with OMS, 162



385

Index

Output Management System, 162
OXML, 171

reading output XML in Python, 221, 287, 291,
367

parsing string values, 114
PERMISSIONS (subcommand)

SAVE command, 10
pivot tables

creating in Python, 304
modifying in Python, 307

PivotTable class, 304
Poisson distribution, 112
protecting data, 10
Python

automation objects, 307
creating Python modules, 239
creating user-defined functions, 239
debugging, 247
displaying submitted SPSS syntax in SPSS output

log, 238
error handling, 227, 243
file specifications, 217, 237
handling wide output, 239
passing information from Python, 225
passing information to Python, 268
print statement, 215
raw strings, 222, 233, 237
regular expressions, 271
string substitution, 234
syntax rules, 222
triple-quoted strings, 222, 233
using a Python IDE to drive SPSS, 228

Python functions and classes, 361
CreateDatasetOutput, 291
CreateXMLOutput, 291
CreateXPathDictionary, 362

Cursor class, 273, 362, 364
DeleteXPathHandle, 287, 367
EvaluateXPath, 287, 367
GetCaseCount, 368
GetHandleList, 368
GetLastErrorlevel, 369
GetLastErrorMessage, 369
GetSPSSInstallDir, 241
GetValuesFromXMLWorkspace, 221, 291
GetVariableCount, 251, 370
GetVariableFormat, 254, 370
GetVariableLabel, 256, 373
GetVariableMeasurementLevel, 253, 373
GetVariableName, 251, 374
GetVariableNamesList, 262
GetVariableType, 257, 374
GetXmlUtf16, 290, 375
IsOutputOn, 375
PivotTable class, 304
SetMacroValue, 225, 376
SetOutput, 377
spssapp class, 302, 304, 307, 310
Spssdata class, 281
StopSPSS, 377
Submit, 217, 378
VariableDict class, 259
ViewerText class, 310

random distribution functions, 111
random samples

reproducing with SET SEED, 18
raw strings, 222, 233, 237
reading data, 23

database tables, 23
Excel, 30
SAS format, 61
Stata format, 63



386

Index

text, 36
RECODE (command), 105

INTO keyword, 106
recoding

categorical variables, 105
scale variables, 106

records

defining wide records with FILE HANDLE, 47
system variable $casenum, 16

regular expressions, 271
remainder, 110
repeating text data, 59
REPLACE (function), 114
RINDEX (function), 117
row count, 368
running SPSS commands in Python, 217, 378
RV.NORMAL (function), 112
RV.POISSON (function), 112

SAS

reading SAS format data, 61
saving data in SAS format, 186

SAS vs. SPSS

aggregating data, 337
arithmetic functions, 347
banding scale data, 345
calculating date/time differences, 351
CALL EXECUTE equivalent, 356
cleaning and validating data, 341
dates and times, 351
extracting date/time parts, 353
finding duplicate records, 343
finding invalid values, 341
%MACRO equivalent, 355
merging data files, 334
random number functions, 348
reading database tables, 329

reading Excel files, 332
reading text data files, 334
recoding categorical data, 344
statistical functions, 347
string concatenation, 349
string parsing, 350
SYMPUT equivalent, 358
SYSPARM equivalent, 359
value labels, 339
variable labels, 339

SAVE (command)

PERMISSIONS subcommand, 10
SAVE TRANSLATE (command), 186
SaveDesignatedOutput method, 302
saving

data in SAS format, 186
data in Stata format, 187

scale variables, 100
recoding (banding), 106

scoring, 193
batch jobs, 207
command syntax, 204
mapping variables, 196
missing values, 196

scratch variables, 12
SELECT IF (command), 143

with $casenum, 16
selecting subsets of cases, 143
SET (command)

SEED subcommand, 18
SetMacroValue, 225, 376
SetOutput, 377
spss module, 216
spssapp class, 302, 304, 307, 310
spssaux module

reading SPSS dictionary information, 258
reading SPSS output results, 291



387

Index

Spssdata class, 281
spssdata module, 280
SQL

reading databases, 26
SQRT (function), 110
square root, 110
Stata

reading Stata data files, 63
saving data in Stata format, 187

StopSPSS, 377
string substitution, 234
string values

changing case, 113
combining, 113
concatenating, 113
converting numeric strings to numbers, 114
converting string dates to date-format numeric

values, 121
parsing, 114
substrings, 114

string variables, 257, 374
Submit, 217, 378
SUBSTR (function), 114
substrings, 114

table lookup file, 72
TEMPORARY (command), 11, 143
temporary transformations, 11
temporary variables, 12
text blocks in Viewer

creating in Python, 310
text data

comma-separated values, 41
complex text data files, 49
CSV format, 41
delimited, 36
fixed width, 37, 42

GET DATA vs. DATA LIST, 37
grouped, 51
hierarchical, 54
mixed format, 50
nested, 54
reading text data files, 36
repeating, 59
wide records, 47

TIME.DAYS (function), 125
TIME.HMS (function), 123
times, 118

computing intervals, 123
functions, 122
input and display formats, 119

transaction files, 77
transformations

date and time, 118
numeric, 109
statistical functions, 110
string, 112

transposing cases and variables, 85
triple-quoted strings in Python, 222, 233
TRUNC (function), 110
truncating values, 110

UNIFORM (function), 112
uniform distribution, 112
unknown measurement level, 373
UPCASE (function), 113
UPDATE (command), 77
updating data files, 77
user-missing values, 99
using case weights to replicate crosstabulations, 83

valid cases

NVALID function, 110



388

Index

VALIDATEDATA (command), 136
validating data, 129, 136
value labels, 98, 264

adding, 99
VALUE LABELS (command), 98
ValueLabels method, 264
VARIABLE ATTRIBUTE (command), 100
variable attributes

retrieving, 268
variable count, 251, 370
variable format, 254, 370
variable label, 256, 373
variable labels, 98
VARIABLE LABELS (command), 98
VARIABLE LEVEL (command), 100
variable names, 251, 374
VariableDict class, 259
variables

creating with VECTOR command, 149
making variables from cases, 86
measurement level, 100

VARSTOCASES (command), 89
VECTOR (command), 147

creating variables, 149
short form, 150

vectors, 147
errors caused by disappearing vectors, 149

viewer module, 301
creating pivot tables, 304
creating text blocks, 310
modifying pivot tables, 307
saving viewer contents, 302
using from a Python IDE, 312

ViewerText class, 310
visual bander, 106

WEIGHT (command), 82

weighting data, 82–83
wide records

defining with FILE HANDLE command, 47
WRITE (command), 17

XDATE.DATE (function), 127
XML

OXML output from OMS, 171
XML workspace, 287

writing contents to an XML file, 290
XPath expressions, 287, 367
XSAVE (command), 17

building a data file with LOOP and XSAVE, 156
XSLT

using with OXML, 171

years

calculating number of years between dates, 124

zeros

preserving leading zeros, 114


	SPSS Programming and Data Management, 3rd Edition: A Guide for SPSS and SAS Users
	Table of Contents
	1. Overview
	Using This Book
	Documentation Resources

	Data Management
	2. Best Practices and Efficiency Tips
	Working with Command Syntax
	Creating Command Syntax Files
	Running SPSS Commands
	Syntax Rules

	Customizing the Programming Environment
	Displaying Commands in the Log
	Displaying the Status Bar in Command Syntax Windows

	Protecting the Original Data
	Do Not Overwrite Original Variables
	Using Temporary Transformations
	Using Temporary Variables

	Use EXECUTE Sparingly
	Lag Functions
	Using $CASENUM to Select Cases
	MISSING VALUES Command
	WRITE and XSAVE Commands

	Using Comments
	Using SET SEED to Reproduce Random Samples or Values
	Divide and Conquer
	Using INSERT with a Master Command Syntax File
	Defining Global Settings


	3. Getting Data into SPSS
	Getting Data from Databases
	Installing Database Drivers
	Database Wizard
	Reading a Single Database Table
	Reading Multiple Tables

	Reading Excel Files
	Reading a “Typical” Worksheet
	Reading Multiple Worksheets

	Reading Text Data Files
	Simple Text Data Files
	Delimited Text Data
	Fixed-Width Text Data
	Text Data Files with Very Wide Records
	Reading Different Types of Text Data

	Reading Complex Text Data Files
	Mixed Files
	Grouped Files
	Nested (Hierarchical) Files
	Repeating Data

	Reading SAS Data Files
	Reading Stata Data Files

	4. File Operations
	Working with Multiple Data Sources
	Merging Data Files
	Merging Files with the Same Cases but Different Variables
	Merging Files with the Same Variables but Different Cases
	Updating Data Files by Merging New Values from Transaction Files

	Aggregating Data
	Aggregate Summary Functions

	Weighting Data
	Changing File Structure
	Transposing Cases and Variables
	Cases to Variables
	Variables to Cases


	5. Variable and File Properties
	Variable Properties
	Variable Labels
	Value Labels
	Missing Values
	Measurement Level
	Custom Variable Properties
	Using Variable Properties As Templates

	File Properties

	6. Data Transformations
	Recoding Categorical Variables
	Banding Scale Variables
	Simple Numeric Transformations
	Arithmetic and Statistical Functions
	Random Value and Distribution Functions
	String Manipulation
	Changing the Case of String Values
	Combining String Values
	Taking Strings Apart

	Working with Dates and Times
	Date Input and Display Formats
	Date and Time Functions


	7. Cleaning and Validating Data
	Finding and Displaying Invalid Values
	Excluding Invalid Data from Analysis
	Finding and Filtering Duplicates
	Data Validation Option

	8. Conditional Processing, Looping, and Repeating
	Indenting Commands in Programming Structures
	Conditional Processing
	Conditional Transformations
	Conditional Case Selection

	Simplifying Repetitive Tasks with DO REPEAT
	ALL Keyword and Error Handling

	Vectors
	Creating Variables with VECTOR
	Disappearing Vectors

	Loop Structures
	Indexing Clauses
	Nested Loops
	Conditional Loops
	Using XSAVE in a Loop to Build a Data File
	Calculations Affected by Low Default MXLOOPS Setting


	9. Exporting Data and Results
	Output Management System
	Using Output as Input with OMS
	Adding Group Percentile Values to a Data File
	Bootstrapping with OMS
	Transforming OXML with XSLT
	“Pushing” Content from an XML File
	“Pulling” Content from an XML File
	Positional Arguments versus Localized Text Attributes
	Layered Split-File Processing

	Exporting Data to Other Applications and Formats
	Saving Data in SAS Format
	Saving Data in Stata Format
	Saving Data in Excel Format
	Writing Data Back to a Database
	Saving Data in Text Format

	Exporting Results to Word, Excel, and PowerPoint

	10. Scoring Data with Predictive Models
	Introduction
	Basics of Scoring Data
	Command Syntax for Scoring
	Mapping Model Variables to SPSS Variables
	Missing Values in Scoring

	Using Predictive Modeling to Identify Potential Customers
	Building and Saving Predictive Models
	Commands for Scoring Your Data
	Including Post-Scoring Transformations
	Getting Data and Saving Results
	Running Your Scoring Job Using the SPSS Batch Facility



	Programming with SPSS and Python
	11. Introduction
	12. Getting Started with Python Programming in SPSS
	The spss Python Module
	Submitting Commands to SPSS
	Dynamically Creating SPSS Command Syntax
	Capturing and Accessing Output
	Python Syntax Rules
	Mixing Command Syntax and Program Blocks
	Handling Errors
	Using a Python IDE
	Supplementary Python Modules for Use with SPSS
	Getting Help

	13. Best Practices
	Creating Blocks of Command Syntax within Program Blocks
	Dynamically Specifying Command Syntax Using String Substitution
	Using Raw Strings in Python
	Displaying Command Syntax Generated by Program Blocks
	Handling Wide Output in the Viewer
	Creating User-Defined Functions in Python
	Creating a File Handle to the SPSS Install Directory
	Choosing the Best Programming Technology
	Using Exception Handling in Python
	Debugging Your Python Code

	14. Working with Variable Dictionary Information
	Summarizing Variables by Measurement Level
	Listing Variables of a Specified Format
	Checking If a Variable Exists
	Creating Separate Lists of Numeric and String Variables
	Using Object-Oriented Methods for Retrieving Dictionary Information
	Getting Started with the VariableDict Class
	Defining a List of Variables between Two Variables
	Identifying Variables without Value Labels
	Retrieving Definitions of User-Missing Values
	Retrieving Variable or Datafile Attributes
	Using Regular Expressions to Select Variables


	15. Getting Case Data from the Active Dataset
	Using the Cursor Class
	Reducing a String to Minimum Length
	Using the spssdata Module
	Getting Started with the Spssdata Class
	Using Case Data to Calculate a Simple Statistic


	16. Retrieving Output from SPSS Commands
	Getting Started with the XML Workspace
	Writing XML Workspace Contents to a File

	Using the spssaux Module

	17. Creating, Modifying, and Saving Viewer Contents
	Getting Started with the viewer Module
	Persistence of Objects

	Creating a Custom Pivot Table
	Modifying Pivot Tables
	Creating a Text Block
	Using the viewer Module from a Python IDE

	18. Tips on Migrating Command Syntax, Macro, and Scripting Jobs to Python
	Migrating Command Syntax Jobs to Python
	Migrating Macros to Python
	Migrating Sax Basic Scripts to Python


	19. SPSS for SAS Programmers
	Reading Data
	Reading Database Tables
	Reading Excel Files
	Reading Text Data

	Merging Data Files
	Merging Files with the Same Cases but Different Variables
	Merging Files with the Same Variables but Different Cases

	Aggregating Data
	Assigning Variable Properties
	Variable Labels
	Value Labels

	Cleaning and Validating Data
	Finding and Displaying Invalid Values
	Finding and Filtering Duplicates

	Transforming Data Values
	Recoding Data
	Banding Data
	Numeric Functions
	Random Number Functions
	String Concatenation
	String Parsing

	Working with Dates and Times
	Calculating and Converting Date and Time Intervals
	Adding to or Subtracting from One Date to Find Another Date
	Extracting Date and Time Information

	Custom Functions, Job Flow Control, and Global Macro Variables
	Creating Custom Functions
	Job Flow Control
	Creating Global Macro Variables
	Setting Global Macro Variables to Values from the Environment


	A. Python Functions
	spss.CreateXPathDictionary Function
	spss.Cursor Function
	spss.Cursor Methods

	spss.DeleteXPathHandle Function
	spss.EvaluateXPath Function
	spss.GetCaseCount Function
	spss.GetHandleList Function
	spss.GetLastErrorLevel and spss.GetLastErrorMessage Functions
	spss.GetVariableCount Function
	spss.GetVariableFormat Function
	spss.GetVariableLabel Function
	spss.GetVariableMeasurementLevel Function
	spss.GetVariableName Function
	spss.GetVariableType Function
	spss.GetXmlUtf16 Function
	spss.IsOutputOn Function
	spss.PyInvokeSpss.IsXDriven function
	spss.SetMacroValue Function
	spss.SetOutput Function
	spss.StopSPSS Function
	spss.Submit Function

	Index


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


